Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho bài tập 41 trang 77 sách bài tập Toán 12 chương trình Cánh Diều. Bài viết này sẽ giúp bạn nắm vững kiến thức và kỹ năng giải toán, tự tin hơn trong các kỳ thi.
Chúng tôi hiểu rằng việc giải toán đôi khi có thể gặp khó khăn. Vì vậy, đội ngũ giáo viên giàu kinh nghiệm của giaitoan.edu.vn đã biên soạn lời giải bài 41 trang 77 một cách cẩn thận, đảm bảo tính chính xác và dễ tiếp thu.
Cho hình lập phương (ABCD.A'B'C'D') có cạnh bằng (a). Tính: a) (overrightarrow {A'B} .overrightarrow {B'C'} ); b) (overrightarrow {D'A} .overrightarrow {BA'} ).
Đề bài
Cho hình lập phương \(ABCD.A'B'C'D'\) có cạnh bằng \(a\). Tính:
a) \(\overrightarrow {A'B} .\overrightarrow {B'C'} \);
b) \(\overrightarrow {D'A} .\overrightarrow {BA'} \).
Phương pháp giải - Xem chi tiết
Sử dụng tích vô hướng của hai vectơ: \(\cos \left( {\overrightarrow a ,\overrightarrow b } \right) = \frac{{\overrightarrow a .\overrightarrow b }}{{\left| {\overrightarrow a } \right|.\left| {\overrightarrow b } \right|}}\).
Lời giải chi tiết
a) Ta có: \(B'C' \bot \left( {ABB'A'} \right) \Rightarrow B'C' \bot A'B\).
\( \Rightarrow \left( {\overrightarrow {A'B} ,\overrightarrow {B'C'} } \right) = {90^ \circ } \Rightarrow \overrightarrow {A'B} .\overrightarrow {B'C'} = 0\)
b) Ta có:
\(\overrightarrow {D'A} .\overrightarrow {BA'} = - \overrightarrow {D'A} .\overrightarrow {A'B} = - \left| {\overrightarrow {D'A} } \right|.\left| {\overrightarrow {A'B} } \right|.\cos \left( {\overrightarrow {D'A} ,\overrightarrow {A'B} } \right) = - AD'.A'B.\cos \left( {\overrightarrow {D'A} ,\overrightarrow {A'B} } \right)\)
\(\overrightarrow {A'B} = \overrightarrow {D'C} \Rightarrow \left( {\overrightarrow {D'A} ,\overrightarrow {A'B} } \right) = \left( {\overrightarrow {D'A} ,\overrightarrow {D'C} } \right) = \widehat {A{\rm{D}}'C}\).
Xét tam giác \(AC{\rm{D}}'\) có \(AC,AD',CD'\) đều là các đường chéo của các hình vuông là các mặt của hình lập phương.
Do đó \(AC = AD' = CD'\). Vậy tam giác \(AC{\rm{D}}'\) đều.
Suy ra \(\left( {\overrightarrow {D'A} ,\overrightarrow {A'B} } \right) = \widehat {A{\rm{D}}'C} = {60^ \circ }\).
\(\overrightarrow {D'A} .\overrightarrow {BA'} = - a.a.\cos {60^ \circ } = - \frac{{{a^2}}}{2}\).
Bài 41 trang 77 sách bài tập Toán 12 Cánh Diều thuộc chương trình học về đạo hàm. Bài tập này thường yêu cầu học sinh vận dụng các kiến thức về đạo hàm của hàm số, đạo hàm của tổng, hiệu, tích, thương của các hàm số, và quy tắc đạo hàm của hàm hợp để giải quyết các bài toán cụ thể.
Bài 41 thường bao gồm các dạng bài tập sau:
Để giải bài 41 trang 77 sách bài tập Toán 12 Cánh Diều một cách hiệu quả, bạn cần nắm vững các kiến thức sau:
Ví dụ minh họa:
Giả sử bài tập yêu cầu tính đạo hàm của hàm số f(x) = x3 + 2x2 - 5x + 1.
Giải:
f'(x) = 3x2 + 4x - 5
Lưu ý:
Ngoài bài 41 trang 77, sách bài tập Toán 12 Cánh Diều còn có nhiều bài tập tương tự về đạo hàm. Bạn có thể luyện tập thêm các bài tập này để củng cố kiến thức và kỹ năng của mình.
Dưới đây là một số bài tập luyện tập:
Để học tập và ôn luyện môn Toán 12 hiệu quả, bạn có thể tham khảo các tài liệu sau:
Hy vọng bài viết này đã cung cấp cho bạn những thông tin hữu ích về cách giải bài 41 trang 77 sách bài tập Toán 12 Cánh Diều. Chúc bạn học tập tốt!