Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho bài tập Toán 12. Bài viết này sẽ hướng dẫn bạn giải bài 40 trang 60 Sách bài tập Toán 12 - Cánh Diều một cách nhanh chóng và hiệu quả.
Chúng tôi hiểu rằng việc giải toán đôi khi có thể gặp khó khăn, đặc biệt là với những bài tập phức tạp. Vì vậy, chúng tôi đã biên soạn lời giải chi tiết, kèm theo các bước giải rõ ràng, giúp bạn nắm vững kiến thức và kỹ năng giải toán.
Cho hai đường thẳng ({Delta _1}:left{ begin{array}{l}x = 11 - 3{t_1}\y = - 5 + 4{t_1}\z = m{t_1}end{array} right.) và ({Delta _2}:left{ begin{array}{l}x = - 4 + 5{t_2}\y = 2 + 3{t_2}\z = 2{t_2}end{array} right.), với (m) là tham số thực; ({t_1},{t_2}) là tham số của phương trình đường thẳng. Tìm (m) để hai đường thẳng đó vuông góc với nhau.
Đề bài
Cho hai đường thẳng \({\Delta _1}:\left\{ \begin{array}{l}x = 11 - 3{t_1}\\y = - 5 + 4{t_1}\\z = m{t_1}\end{array} \right.\) và \({\Delta _2}:\left\{ \begin{array}{l}x = - 4 + 5{t_2}\\y = 2 + 3{t_2}\\z = 2{t_2}\end{array} \right.\), với \(m\) là tham số thực; \({t_1},{t_2}\) là tham số của phương trình đường thẳng. Tìm \(m\) để hai đường thẳng đó vuông góc với nhau.
Phương pháp giải - Xem chi tiết
Hai đường thẳng \({\Delta _1}\) và \({\Delta _2}\) có vectơ chỉ phương lần lượt là \(\overrightarrow {{u_1}} = \left( {{a_1};{b_1};{c_1}} \right),\overrightarrow {{u_2}} = \left( {{a_2};{b_2};{c_2}} \right)\). Khi đó ta có: \({\Delta _1} \bot {\Delta _2} \Leftrightarrow {a_1}{a_2} + {b_1}{b_2} + {c_1}{c_2} = 0\).
Lời giải chi tiết
Đường thẳng \({\Delta _1}\) có vectơ chỉ phương \(\overrightarrow {{u_1}} = \left( { - 3;4;m} \right)\).
Đường thẳng \({\Delta _2}\) có vectơ chỉ phương \(\overrightarrow {{u_2}} = \left( {5;3;2} \right)\).
Khi đó: \({\Delta _1} \bot {\Delta _2} \Leftrightarrow - 3.5 + 4.3 + m.2 = 0 \Leftrightarrow m = \frac{3}{2}\).
Bài 40 trang 60 Sách bài tập Toán 12 - Cánh Diều thuộc chương trình học Toán 12, tập trung vào việc ôn tập và củng cố kiến thức về các chủ đề đã học. Bài tập này thường yêu cầu học sinh vận dụng các công thức, định lý và kỹ năng giải toán đã được học để giải quyết các bài toán thực tế.
Bài 40 thường bao gồm các dạng bài tập sau:
Để giải bài 40 trang 60 Sách bài tập Toán 12 - Cánh Diều một cách hiệu quả, bạn cần:
Ví dụ: Cho hàm số y = x3 - 3x2 + 2. Tìm khoảng đồng biến của hàm số.
Giải:
Ta có y' = 3x2 - 6x = 3x(x - 2).
y' = 0 khi x = 0 hoặc x = 2.
Xét dấu y':
x | -∞ | 0 | 2 | +∞ |
---|---|---|---|---|
y' | + | - | + | |
y | Đồng biến | Nghịch biến | Đồng biến |
Vậy hàm số đồng biến trên các khoảng (-∞; 0) và (2; +∞).
Để đạt kết quả tốt nhất khi giải bài 40 trang 60 Sách bài tập Toán 12 - Cánh Diều, bạn nên:
Bài 40 trang 60 Sách bài tập Toán 12 - Cánh Diều là một bài tập quan trọng giúp bạn củng cố kiến thức và kỹ năng giải toán. Hy vọng với hướng dẫn chi tiết và ví dụ minh họa trên, bạn sẽ giải bài tập này một cách dễ dàng và hiệu quả. Chúc bạn học tốt!