Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho bài tập toán 12 sách Cánh Diều. Bài viết này sẽ hướng dẫn bạn từng bước giải bài 7 trang 88, giúp bạn nắm vững kiến thức và tự tin hơn trong quá trình học tập.
Chúng tôi hiểu rằng việc giải toán đôi khi có thể gặp khó khăn. Vì vậy, đội ngũ giáo viên giàu kinh nghiệm của giaitoan.edu.vn đã biên soạn lời giải một cách cẩn thận, đảm bảo tính chính xác và dễ tiếp thu.
Một hộp đựng 24 chai nước giải khát có hình dạng và kích thước như nhau, trong đó có 2 chai nước giải khát ghi giải thưởng “Bạn nhận được thêm một chai nước giải khát”. Chọn ra ngẫu nhiên lần lượt (không hoàn lại) hai chai nước trong hộp. Tính xác suất để cả hai chai đều ghi giải thưởng.
Đề bài
Một hộp đựng 24 chai nước giải khát có hình dạng và kích thước như nhau, trong đó có 2 chai nước giải khát ghi giải thưởng “Bạn nhận được thêm một chai nước giải khát”. Chọn ra ngẫu nhiên lần lượt (không hoàn lại) hai chai nước trong hộp. Tính xác suất để cả hai chai đều ghi giải thưởng.
Phương pháp giải - Xem chi tiết
‒ Sử dụng công thức tính xác suất của biến cố \(A\): \(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( {\Omega } \right)}}\).
‒ Sử dụng công thức: \(P\left( {A \cap B} \right) = P\left( B \right).P\left( {A|B} \right)\).
Lời giải chi tiết
Xét các biến cố:
\(A\): “Chai được chọn ở lần thứ nhất có ghi giải thưởng”;
\(B\): “Chai được chọn ở lần thứ hai có ghi giải thưởng”;
\(C\): “Cả hai chai được chọn đều ghi giải thưởng”.
Khi đó \(C = A \cap B\).
Số phần tử của không gian mẫu: \(n\left({\Omega } \right) = 24.23 = 552\).
Số phần tử của biến cố \(A\): “Chai được chọn ở lần thứ nhất có ghi giải thưởng” là: \(n\left( A \right) = 2.22 + 2.1 = 46\).
Vậy ta có: \(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left({\Omega } \right)}} = \frac{{46}}{{552}} = \frac{1}{{12}}\).
Xác suất để chai được chọn ở lần thứ hai có ghi giải thưởng, biết chai được chọn ở lần thứ nhất có ghi giải thưởng là xác suất có điều kiện \(P\left( {B|A} \right)\).
Vì sau khi lấy một chai có ghi giải thưởng thì trong lần thứ hai chỉ còn 1 chai có ghi giải thưởng và tổng số chai là 23 nên ta có: \(P\left( {B|A} \right) = \frac{1}{{23}}\).
Ta có: \(P\left( {A \cap B} \right) = P\left( {B \cap A} \right) = P\left( A \right).P\left( {B|A} \right) = \frac{1}{{12}}.\frac{1}{{23}} = \frac{{15}}{{276}}\).
Bài 7 trang 88 sách bài tập toán 12 - Cánh diều thuộc chương trình học về đạo hàm. Bài tập này thường yêu cầu học sinh vận dụng các kiến thức về đạo hàm của hàm số, đạo hàm của tổng, hiệu, tích, thương của các hàm số, và quy tắc đạo hàm của hàm hợp để giải quyết các bài toán cụ thể. Việc nắm vững các khái niệm và công thức đạo hàm là yếu tố then chốt để hoàn thành tốt bài tập này.
Bài 7 thường bao gồm các dạng bài tập sau:
Để tính đạo hàm của hàm số f(x) = x^3 - 2x^2 + 5x - 1, ta áp dụng công thức đạo hàm của tổng và hiệu, cũng như công thức đạo hàm của lũy thừa:
f'(x) = (x^3)' - (2x^2)' + (5x)' - (1)'
f'(x) = 3x^2 - 4x + 5 - 0
f'(x) = 3x^2 - 4x + 5
Để tính đạo hàm của hàm số g(x) = sin(2x) + cos(x), ta áp dụng công thức đạo hàm của hàm lượng giác và quy tắc đạo hàm của hàm hợp:
g'(x) = (sin(2x))' + (cos(x))'
g'(x) = cos(2x) * (2x)' - sin(x)
g'(x) = 2cos(2x) - sin(x)
Để tìm đạo hàm cấp hai của hàm số h(x) = x^4 - 3x^2 + 2, ta cần tính đạo hàm cấp một trước:
h'(x) = (x^4)' - (3x^2)' + (2)'
h'(x) = 4x^3 - 6x
Sau đó, ta tính đạo hàm cấp hai:
h''(x) = (4x^3)' - (6x)'
h''(x) = 12x^2 - 6
Để hiểu rõ hơn về đạo hàm và các ứng dụng của nó, bạn có thể tham khảo các tài liệu sau:
Bài 7 trang 88 sách bài tập toán 12 - Cánh diều là một bài tập quan trọng giúp học sinh củng cố kiến thức về đạo hàm. Hy vọng rằng với hướng dẫn chi tiết này, bạn sẽ tự tin hơn trong việc giải quyết bài tập và đạt kết quả tốt trong môn toán.