Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho bài 8 trang 61 sách bài tập Toán 12 chương trình Cánh Diều. Bài viết này sẽ giúp bạn nắm vững kiến thức và kỹ năng giải toán, tự tin hơn trong các kỳ thi.
Chúng tôi hiểu rằng việc giải toán đôi khi có thể gặp khó khăn. Vì vậy, đội ngũ giáo viên giàu kinh nghiệm của giaitoan.edu.vn đã biên soạn lời giải bài 8 trang 61 một cách cẩn thận, đảm bảo tính chính xác và dễ tiếp thu.
Trong mỗi ý a), b), c), d), chọn phương án đúng (Đ) hoặc sai (S). Cho hình chóp tứ giác đều (S.ABCD) có độ dài tất cả các cạnh đều bằng (a) (Hình 10). a) Tứ giác (ABCD) là hình vuông. b) Tam giác (SAC) vuông cân tại (S). c) (left( {overrightarrow {SA} ,overrightarrow {AC} } right) = {45^ circ }). d) (overrightarrow {SA} .overrightarrow {AC} = - {a^2}).
Đề bài
Trong mỗi ý a), b), c), d), chọn phương án đúng (Đ) hoặc sai (S).Cho hình chóp tứ giác đều \(S.ABCD\) có độ dài tất cả các cạnh đều bằng \(a\) (Hình 10). a) Tứ giác \(ABCD\) là hình vuông. b) Tam giác \(SAC\) vuông cân tại \(S\). c) \(\left( {\overrightarrow {SA} ,\overrightarrow {AC} } \right) = {45^ \circ }\).d) \(\overrightarrow {SA} .\overrightarrow {AC} = - {a^2}\).
Phương pháp giải - Xem chi tiết
‒ Sử dụng định lí Pitago.
‒ Sử dụng tích vô hướng của hai vectơ: \(\overrightarrow a .\overrightarrow b = \left| {\overrightarrow a } \right|.\left| {\overrightarrow b } \right|.\cos \left( {\overrightarrow a ,\overrightarrow b } \right)\).
Lời giải chi tiết
\(S.ABCD\) là chóp tứ giác đều nên tứ giác \(ABCD\) là hình vuông. Vậy a) đúng.
\(ABCD\) là hình vuông nên \(AC = \sqrt {A{B^2} + B{C^2}} = a\sqrt 2 \).
Tam giác \(SAC\) có: \(S{A^2} + S{C^2} = 2{{\rm{a}}^2} = A{C^2}\).
Vậy tam giác \(SAC\) vuông cân tại \(S\). Vậy b) đúng.
\(\begin{array}{l}\cos \left( {\overrightarrow {SA} ,\overrightarrow {AC} } \right) = \frac{{\overrightarrow {SA} .\overrightarrow {AC} }}{{\left| {\overrightarrow {SA} } \right|.\left| {\overrightarrow {AC} } \right|}} = \frac{{ - \overrightarrow {AS} .\overrightarrow {AC} }}{{\left| {\overrightarrow {SA} } \right|.\left| {\overrightarrow {AC} } \right|}} = \frac{{ - \left| {\overrightarrow {AS} } \right|.\left| {\overrightarrow {AC} } \right|.\cos \left( {\overrightarrow {AS} ,\overrightarrow {AC} } \right)}}{{\left| {\overrightarrow {SA} } \right|.\left| {\overrightarrow {AC} } \right|}}\\ & = \frac{{ - a.a\sqrt 2 .\cos \widehat {SAC}}}{{a.a\sqrt 2 }} = \frac{{ - a.a\sqrt 2 .\cos {{45}^ \circ }}}{{a.a\sqrt 2 }} = - \frac{{\sqrt 2 }}{2}\end{array}\)
\( \Rightarrow \left( {\overrightarrow {SA} ,\overrightarrow {AC} } \right) = {135^ \circ }\). Vậy c) sai.
\(\overrightarrow{SA}.\overrightarrow{AC}=-\overrightarrow{AS}.\overrightarrow{AC}=-\left| \overrightarrow{AS} \right|.\left| \overrightarrow{AC} \right|.\cos \left( \overrightarrow{AS},\overrightarrow{AC} \right)=-a.a\sqrt{2}.\cos \widehat{SAC}=-a.a\sqrt{2}.\cos {{45}^{\circ }}=-{{a}^{2}}\)
Vậy d) đúng.
a) Đ
b) Đ
c) S
d) Đ
Bài 8 trang 61 sách bài tập Toán 12 Cánh Diều thuộc chương trình học về đạo hàm. Bài tập này tập trung vào việc vận dụng các quy tắc tính đạo hàm của hàm số, đặc biệt là đạo hàm của tổng, hiệu, tích, thương và hàm hợp. Việc nắm vững các quy tắc này là nền tảng quan trọng để giải quyết các bài toán phức tạp hơn trong chương trình học.
Bài 8 bao gồm một số câu hỏi và bài tập khác nhau, yêu cầu học sinh:
Đề bài: Tính đạo hàm của các hàm số sau:
Lời giải:
Đề bài: Tính đạo hàm của các hàm số sau:
Lời giải:
Đề bài: Tính đạo hàm của các hàm số sau:
Lời giải:
Để giải bài tập về đạo hàm một cách hiệu quả, bạn cần:
Đạo hàm có rất nhiều ứng dụng trong thực tế, bao gồm:
Bài 8 trang 61 sách bài tập Toán 12 Cánh Diều là một bài tập quan trọng giúp bạn củng cố kiến thức về đạo hàm. Hy vọng rằng với hướng dẫn chi tiết và các lưu ý trên, bạn sẽ tự tin hơn trong việc giải quyết các bài toán liên quan đến đạo hàm. Chúc bạn học tập tốt!