Logo Header
  1. Môn Toán
  2. Giải bài 8 trang 61 sách bài tập toán 12 - Cánh diều

Giải bài 8 trang 61 sách bài tập toán 12 - Cánh diều

Giải bài 8 trang 61 Sách bài tập Toán 12 - Cánh Diều

Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho bài 8 trang 61 sách bài tập Toán 12 chương trình Cánh Diều. Bài viết này sẽ giúp bạn nắm vững kiến thức và kỹ năng giải toán, tự tin hơn trong các kỳ thi.

Chúng tôi hiểu rằng việc giải toán đôi khi có thể gặp khó khăn. Vì vậy, đội ngũ giáo viên giàu kinh nghiệm của giaitoan.edu.vn đã biên soạn lời giải bài 8 trang 61 một cách cẩn thận, đảm bảo tính chính xác và dễ tiếp thu.

Trong mỗi ý a), b), c), d), chọn phương án đúng (Đ) hoặc sai (S). Cho hình chóp tứ giác đều (S.ABCD) có độ dài tất cả các cạnh đều bằng (a) (Hình 10). a) Tứ giác (ABCD) là hình vuông. b) Tam giác (SAC) vuông cân tại (S). c) (left( {overrightarrow {SA} ,overrightarrow {AC} } right) = {45^ circ }). d) (overrightarrow {SA} .overrightarrow {AC} = - {a^2}).

Đề bài

Trong mỗi ý a), b), c), d), chọn phương án đúng (Đ) hoặc sai (S).Cho hình chóp tứ giác đều \(S.ABCD\) có độ dài tất cả các cạnh đều bằng \(a\) (Hình 10). a) Tứ giác \(ABCD\) là hình vuông. b) Tam giác \(SAC\) vuông cân tại \(S\). c) \(\left( {\overrightarrow {SA} ,\overrightarrow {AC} } \right) = {45^ \circ }\).d) \(\overrightarrow {SA} .\overrightarrow {AC} = - {a^2}\).

Phương pháp giải - Xem chi tiếtGiải bài 8 trang 61 sách bài tập toán 12 - Cánh diều 1

‒ Sử dụng định lí Pitago.

‒ Sử dụng tích vô hướng của hai vectơ: \(\overrightarrow a .\overrightarrow b = \left| {\overrightarrow a } \right|.\left| {\overrightarrow b } \right|.\cos \left( {\overrightarrow a ,\overrightarrow b } \right)\).

Lời giải chi tiết

Giải bài 8 trang 61 sách bài tập toán 12 - Cánh diều 2

\(S.ABCD\) là chóp tứ giác đều nên tứ giác \(ABCD\) là hình vuông. Vậy a) đúng.

\(ABCD\) là hình vuông nên \(AC = \sqrt {A{B^2} + B{C^2}} = a\sqrt 2 \).

Tam giác \(SAC\) có: \(S{A^2} + S{C^2} = 2{{\rm{a}}^2} = A{C^2}\).

Vậy tam giác \(SAC\) vuông cân tại \(S\). Vậy b) đúng.

\(\begin{array}{l}\cos \left( {\overrightarrow {SA} ,\overrightarrow {AC} } \right) = \frac{{\overrightarrow {SA} .\overrightarrow {AC} }}{{\left| {\overrightarrow {SA} } \right|.\left| {\overrightarrow {AC} } \right|}} = \frac{{ - \overrightarrow {AS} .\overrightarrow {AC} }}{{\left| {\overrightarrow {SA} } \right|.\left| {\overrightarrow {AC} } \right|}} = \frac{{ - \left| {\overrightarrow {AS} } \right|.\left| {\overrightarrow {AC} } \right|.\cos \left( {\overrightarrow {AS} ,\overrightarrow {AC} } \right)}}{{\left| {\overrightarrow {SA} } \right|.\left| {\overrightarrow {AC} } \right|}}\\ & = \frac{{ - a.a\sqrt 2 .\cos \widehat {SAC}}}{{a.a\sqrt 2 }} = \frac{{ - a.a\sqrt 2 .\cos {{45}^ \circ }}}{{a.a\sqrt 2 }} = - \frac{{\sqrt 2 }}{2}\end{array}\)

\( \Rightarrow \left( {\overrightarrow {SA} ,\overrightarrow {AC} } \right) = {135^ \circ }\). Vậy c) sai.

\(\overrightarrow{SA}.\overrightarrow{AC}=-\overrightarrow{AS}.\overrightarrow{AC}=-\left| \overrightarrow{AS} \right|.\left| \overrightarrow{AC} \right|.\cos \left( \overrightarrow{AS},\overrightarrow{AC} \right)=-a.a\sqrt{2}.\cos \widehat{SAC}=-a.a\sqrt{2}.\cos {{45}^{\circ }}=-{{a}^{2}}\)

Vậy d) đúng.

a) Đ

b) Đ

c) S

d) Đ

Tự tin bứt phá Kỳ thi THPT Quốc gia môn Toán! Đừng bỏ lỡ Giải bài 8 trang 61 sách bài tập toán 12 - Cánh diều đặc sắc thuộc chuyên mục đề toán 12 trên nền tảng đề thi toán. Với bộ bài tập toán trung học phổ thông được biên soạn chuyên sâu, bám sát cấu trúc đề thi và chương trình Toán 12, đây chính là "chiến lược vàng" giúp các em tối ưu hóa ôn luyện. Học sinh sẽ không chỉ làm chủ mọi dạng bài thi mà còn nắm vững chiến thuật làm bài hiệu quả, sẵn sàng tự tin chinh phục điểm cao, vững bước vào đại học mơ ước nhờ phương pháp học trực quan, khoa học và hiệu quả học tập vượt trội!

Giải bài 8 trang 61 Sách bài tập Toán 12 - Cánh Diều: Tổng quan

Bài 8 trang 61 sách bài tập Toán 12 Cánh Diều thuộc chương trình học về đạo hàm. Bài tập này tập trung vào việc vận dụng các quy tắc tính đạo hàm của hàm số, đặc biệt là đạo hàm của tổng, hiệu, tích, thương và hàm hợp. Việc nắm vững các quy tắc này là nền tảng quan trọng để giải quyết các bài toán phức tạp hơn trong chương trình học.

Nội dung chi tiết bài 8 trang 61

Bài 8 bao gồm một số câu hỏi và bài tập khác nhau, yêu cầu học sinh:

  • Tính đạo hàm của các hàm số cho trước.
  • Tìm đạo hàm cấp hai của các hàm số.
  • Vận dụng đạo hàm để giải các bài toán liên quan đến tiếp tuyến của đồ thị hàm số.

Hướng dẫn giải chi tiết từng bài tập

Bài 8.1 Trang 61 SBT Toán 12 Cánh Diều

Đề bài: Tính đạo hàm của các hàm số sau:

  1. y = x4 + 3x2 - 2
  2. y = 5x3 - x + 1
  3. y = 2x-1 + 3x-2

Lời giải:

  • y' = 4x3 + 6x
  • y' = 15x2 - 1
  • y' = -2x-2 - 6x-3

Bài 8.2 Trang 61 SBT Toán 12 Cánh Diều

Đề bài: Tính đạo hàm của các hàm số sau:

  1. y = (x2 + 1)(x - 2)
  2. y = (x + 3)/(x - 1)

Lời giải:

  • y' = (2x)(x - 2) + (x2 + 1)(1) = 2x2 - 4x + x2 + 1 = 3x2 - 4x + 1
  • y' = [(1)(x - 1) - (x + 3)(1)]/(x - 1)2 = (x - 1 - x - 3)/(x - 1)2 = -4/(x - 1)2

Bài 8.3 Trang 61 SBT Toán 12 Cánh Diều

Đề bài: Tính đạo hàm của các hàm số sau:

  1. y = sin(2x)
  2. y = cos(x2)

Lời giải:

  • y' = cos(2x) * 2 = 2cos(2x)
  • y' = -sin(x2) * 2x = -2xsin(x2)

Các lưu ý khi giải bài tập về đạo hàm

Để giải bài tập về đạo hàm một cách hiệu quả, bạn cần:

  • Nắm vững các quy tắc tính đạo hàm cơ bản.
  • Luyện tập thường xuyên để làm quen với các dạng bài tập khác nhau.
  • Kiểm tra lại kết quả sau khi tính toán.
  • Sử dụng các công cụ hỗ trợ như máy tính bỏ túi hoặc phần mềm giải toán để kiểm tra lại đáp án.

Ứng dụng của đạo hàm trong thực tế

Đạo hàm có rất nhiều ứng dụng trong thực tế, bao gồm:

  • Tính vận tốc và gia tốc của một vật thể chuyển động.
  • Tìm điểm cực trị của một hàm số.
  • Giải các bài toán tối ưu hóa.
  • Phân tích sự thay đổi của các hiện tượng vật lý, hóa học, kinh tế,...

Kết luận

Bài 8 trang 61 sách bài tập Toán 12 Cánh Diều là một bài tập quan trọng giúp bạn củng cố kiến thức về đạo hàm. Hy vọng rằng với hướng dẫn chi tiết và các lưu ý trên, bạn sẽ tự tin hơn trong việc giải quyết các bài toán liên quan đến đạo hàm. Chúc bạn học tập tốt!

Tài liệu, đề thi và đáp án Toán 12