Giaitoan.edu.vn xin giới thiệu lời giải chi tiết bài 61 trang 26 Sách bài tập Toán 12 - Cánh Diều. Bài viết này sẽ cung cấp cho bạn các bước giải bài tập một cách rõ ràng, dễ hiểu, giúp bạn nắm vững kiến thức và tự tin hơn trong quá trình học tập.
Chúng tôi luôn cố gắng cung cấp những giải pháp tối ưu nhất, đồng thời giải thích cặn kẽ các khái niệm liên quan để bạn có thể hiểu sâu sắc hơn về bài học.
Số đường tiệm cận của đồ thị hàm số (y = - x + 3 - frac{5}{{2x + 1}}) là: A. 1. B. 2. C. 3. D. 4.
Đề bài
Số đường tiệm cận của đồ thị hàm số \(y = - x + 3 - \frac{5}{{2x + 1}}\) là:
A. 1.
B. 2.
C. 3.
D. 4.
Phương pháp giải - Xem chi tiết
‒ Tìm tiệm cận đứng: Tính \(\mathop {\lim }\limits_{x \to x_0^ - } f\left( x \right)\) hoặc \(\mathop {\lim }\limits_{x \to x_0^ + } f\left( x \right)\), nếu một trong các giới hạn sau thoả mãn:
\(\mathop {\lim }\limits_{x \to x_0^ - } f\left( x \right) = + \infty ;\mathop {\lim }\limits_{x \to x_0^ - } f\left( x \right) = - \infty ;\mathop {\lim }\limits_{x \to x_0^ + } f\left( x \right) = + \infty ;\mathop {\lim }\limits_{x \to x_0^ + } f\left( x \right) = - \infty \)
thì đường thẳng \(x = {x_0}\) là đường tiệm cận đứng.
‒ Tìm tiệm cận ngang: Nếu \(\mathop {\lim }\limits_{x \to + \infty } f\left( x \right) = {y_0}\) hoặc \(\mathop {\lim }\limits_{x \to - \infty } f\left( x \right) = {y_0}\) thì đường thẳng \(y = {y_0}\) là đường tiệm cận ngang.
Lời giải chi tiết
\(y = - x + 3 - \frac{5}{{2x + 1}} = \frac{{ - 2{{\rm{x}}^2} + 5{\rm{x}} - 2}}{{2x + 1}}\)
Hàm số có tập xác định là \(\mathbb{R}\backslash \left\{ { - \frac{1}{2}} \right\}\).
Ta có:
• \(\mathop {\lim }\limits_{x \to - {{\frac{1}{2}}^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to - {{\frac{1}{2}}^ - }} \frac{{ - 2{{\rm{x}}^2} + 5{\rm{x}} - 2}}{{2x + 1}} = + \infty ;\mathop {\lim }\limits_{x \to - {{\frac{1}{2}}^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to - {{\frac{1}{2}}^ + }} \frac{{ - 2{{\rm{x}}^2} + 5{\rm{x}} - 2}}{{2x + 1}} = - \infty \)
Vậy \(x = - \frac{1}{2}\) là tiệm cận đứng của đồ thị hàm số đã cho.
• \(\mathop {\lim }\limits_{x \to + \infty } f\left( x \right) = \mathop {\lim }\limits_{x \to + \infty } \frac{{ - 2{{\rm{x}}^2} + 5{\rm{x}} - 2}}{{2x + 1}} = - \infty ;\mathop {\lim }\limits_{x \to - \infty } f\left( x \right) = \mathop {\lim }\limits_{x \to - \infty } \frac{{ - 2{{\rm{x}}^2} + 5{\rm{x}} - 2}}{{2x + 1}} = + \infty \)
Vậy hàm số không có tiệm cận ngang.
• \(a = \mathop {\lim }\limits_{x \to + \infty } \frac{{f\left( x \right)}}{x} = \mathop {\lim }\limits_{x \to + \infty } \frac{{ - 2{{\rm{x}}^2} + 5{\rm{x}} - 2}}{{x\left( {2x + 1} \right)}} = - 1\) và
\(b = \mathop {\lim }\limits_{x \to + \infty } \left[ {f\left( x \right) + x} \right] = \mathop {\lim }\limits_{x \to + \infty } \left[ {\frac{{ - 2{{\rm{x}}^2} + 5{\rm{x}} - 2}}{{2x + 1}} + x} \right] = \mathop {\lim }\limits_{x \to + \infty } \frac{{6{\rm{x}} - 2}}{{2x + 1}} = 3\)
Vậy đường thẳng \(y = - x + 3\) là tiệm cận xiên của đồ thị hàm số đã cho.
Vậy hàm số có 2 đường tiệm cận.
Chọn B.
Bài 61 trang 26 Sách bài tập Toán 12 - Cánh Diều thuộc chương trình học Toán 12, tập trung vào việc vận dụng kiến thức về đạo hàm để giải quyết các bài toán thực tế. Bài tập này thường yêu cầu học sinh phải hiểu rõ các quy tắc tính đạo hàm, các ứng dụng của đạo hàm trong việc tìm cực trị, khoảng đơn điệu của hàm số và giải các bài toán liên quan đến tối ưu hóa.
Để giải bài 61 trang 26 Sách bài tập Toán 12 - Cánh Diều một cách hiệu quả, bạn cần thực hiện các bước sau:
Giả sử bài 61 yêu cầu tìm giá trị lớn nhất của hàm số f(x) = -x3 + 3x2 - 2 trên đoạn [0; 3].
Giải:
Ngoài bài toán tìm cực trị, bài 61 trang 26 Sách bài tập Toán 12 - Cánh Diều còn có thể xuất hiện các dạng bài tập sau:
Để giải bài tập về đạo hàm một cách hiệu quả, bạn nên:
Để học tập và ôn luyện kiến thức về đạo hàm, bạn có thể tham khảo các tài liệu sau:
Bài 61 trang 26 Sách bài tập Toán 12 - Cánh Diều là một bài tập quan trọng giúp bạn củng cố kiến thức về đạo hàm và rèn luyện kỹ năng giải toán. Hy vọng với những hướng dẫn chi tiết và ví dụ minh họa trên, bạn sẽ tự tin hơn trong việc giải quyết bài tập này và đạt kết quả tốt trong kỳ thi sắp tới.