Logo Header
  1. Môn Toán
  2. Giải bài 3 trang 46 sách bài tập toán 12 - Cánh diều

Giải bài 3 trang 46 sách bài tập toán 12 - Cánh diều

Giải bài 3 trang 46 Sách bài tập Toán 12 - Cánh Diều

Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho bài 3 trang 46 sách bài tập Toán 12 chương trình Cánh Diều. Bài viết này sẽ giúp bạn nắm vững kiến thức và kỹ năng giải toán, tự tin hơn trong các kỳ thi.

Chúng tôi hiểu rằng việc giải toán đôi khi có thể gặp khó khăn. Vì vậy, đội ngũ giáo viên giàu kinh nghiệm của giaitoan.edu.vn đã biên soạn lời giải bài 3 trang 46 một cách cẩn thận, đảm bảo tính chính xác và dễ tiếp thu.

Cho mặt phẳng (left( P right):3x - 6y + 12z - 13 = 0). Vectơ nào sau đây là vectơ pháp tuyến của mặt phẳng (left( P right))? A. (overrightarrow {{n_1}} = left( {3;6;12} right)). B. (overrightarrow {{n_2}} = left( {3x;6y;12z} right)). C. (overrightarrow {{n_3}} = left( {3x; - 6y;12z} right)). D. (overrightarrow {{n_4}} = left( { - 1;2; - 4} right)).

Đề bài

Cho mặt phẳng \(\left( P \right):3x - 6y + 12z - 13 = 0\). Vectơ nào sau đây là vectơ pháp tuyến của mặt phẳng \(\left( P \right)\)?

A. \(\overrightarrow {{n_1}} = \left( {3;6;12} \right)\).

B. \(\overrightarrow {{n_2}} = \left( {3x;6y;12z} \right)\).

C. \(\overrightarrow {{n_3}} = \left( {3x; - 6y;12z} \right)\).

D. \(\overrightarrow {{n_4}} = \left( { - 1;2; - 4} \right)\).

Phương pháp giải - Xem chi tiếtGiải bài 3 trang 46 sách bài tập toán 12 - Cánh diều 1

Mặt phẳng \(\left( P \right):Ax + By + C{\rm{z}} + D = 0\) nhận \(\overrightarrow n = \left( {A,B,C} \right)\) làm vectơ pháp tuyến.

Lời giải chi tiết

Mặt phẳng \(\left( P \right):3x - 6y + 12z - 13 = 0\) có vectơ pháp tuyến \(\overrightarrow n = \left( {3; - 6;12} \right) = - 3\left( { - 1;2; - 4} \right)\).

Vậy \(\overrightarrow {{n_4}} = \left( { - 1;2; - 4} \right)\) cũng là vectơ pháp tuyến của mặt phẳng \(\left( P \right)\).

Chọn D.

Tự tin bứt phá Kỳ thi THPT Quốc gia môn Toán! Đừng bỏ lỡ Giải bài 3 trang 46 sách bài tập toán 12 - Cánh diều đặc sắc thuộc chuyên mục đề toán lớp 12 trên nền tảng toán học. Với bộ bài tập toán trung học phổ thông được biên soạn chuyên sâu, bám sát cấu trúc đề thi và chương trình Toán 12, đây chính là "chiến lược vàng" giúp các em tối ưu hóa ôn luyện. Học sinh sẽ không chỉ làm chủ mọi dạng bài thi mà còn nắm vững chiến thuật làm bài hiệu quả, sẵn sàng tự tin chinh phục điểm cao, vững bước vào đại học mơ ước nhờ phương pháp học trực quan, khoa học và hiệu quả học tập vượt trội!

Giải bài 3 trang 46 Sách bài tập Toán 12 - Cánh Diều: Tổng quan

Bài 3 trang 46 sách bài tập Toán 12 Cánh Diều thuộc chương trình học về đạo hàm. Bài tập này thường tập trung vào việc vận dụng các quy tắc tính đạo hàm của các hàm số cơ bản như hàm đa thức, hàm lượng giác, hàm mũ, hàm logarit và các phép toán trên hàm số. Việc nắm vững kiến thức về đạo hàm là vô cùng quan trọng, không chỉ để giải quyết các bài toán trong sách giáo khoa mà còn là nền tảng cho việc học tập các môn khoa học khác.

Nội dung chi tiết bài 3 trang 46

Bài 3 thường bao gồm các dạng bài tập sau:

  • Tính đạo hàm của hàm số: Yêu cầu tính đạo hàm của một hàm số cho trước.
  • Tìm đạo hàm cấp hai: Yêu cầu tìm đạo hàm cấp hai của một hàm số.
  • Vận dụng đạo hàm để giải quyết các bài toán thực tế: Ví dụ như tìm vận tốc, gia tốc của một vật chuyển động.

Hướng dẫn giải chi tiết từng phần của bài 3

Phần a: Tính đạo hàm của hàm số f(x) = x^3 - 2x^2 + 5x - 1

Để tính đạo hàm của hàm số f(x) = x^3 - 2x^2 + 5x - 1, ta sử dụng quy tắc đạo hàm của tổng và hiệu, cũng như quy tắc đạo hàm của lũy thừa:

f'(x) = (x^3)' - (2x^2)' + (5x)' - (1)'

f'(x) = 3x^2 - 4x + 5 - 0

f'(x) = 3x^2 - 4x + 5

Phần b: Tính đạo hàm của hàm số g(x) = sin(2x) + cos(x)

Để tính đạo hàm của hàm số g(x) = sin(2x) + cos(x), ta sử dụng quy tắc đạo hàm của tổng và quy tắc đạo hàm của hàm lượng giác:

g'(x) = (sin(2x))' + (cos(x))'

g'(x) = cos(2x) * 2 - sin(x)

g'(x) = 2cos(2x) - sin(x)

Phần c: Tìm đạo hàm cấp hai của hàm số h(x) = x^4 - 3x^2 + 2

Để tìm đạo hàm cấp hai của hàm số h(x) = x^4 - 3x^2 + 2, ta thực hiện hai lần phép tính đạo hàm:

h'(x) = (x^4)' - (3x^2)' + (2)'

h'(x) = 4x^3 - 6x + 0

h'(x) = 4x^3 - 6x

h''(x) = (4x^3)' - (6x)'

h''(x) = 12x^2 - 6

Các lưu ý khi giải bài tập về đạo hàm

  • Nắm vững các quy tắc đạo hàm cơ bản: Quy tắc đạo hàm của tổng, hiệu, tích, thương, hàm hợp, hàm lượng giác, hàm mũ, hàm logarit.
  • Sử dụng đúng công thức đạo hàm: Tránh nhầm lẫn giữa các công thức đạo hàm.
  • Kiểm tra lại kết quả: Sau khi tính đạo hàm, hãy kiểm tra lại kết quả để đảm bảo tính chính xác.
  • Luyện tập thường xuyên: Giải nhiều bài tập khác nhau để rèn luyện kỹ năng và nâng cao kiến thức.

Ứng dụng của đạo hàm trong thực tế

Đạo hàm có rất nhiều ứng dụng trong thực tế, bao gồm:

  • Vật lý: Tính vận tốc, gia tốc, lực.
  • Kinh tế: Tính chi phí biên, doanh thu biên, lợi nhuận biên.
  • Kỹ thuật: Tối ưu hóa thiết kế, điều khiển hệ thống.
  • Thống kê: Phân tích dữ liệu, dự đoán xu hướng.

Kết luận

Bài 3 trang 46 sách bài tập Toán 12 Cánh Diều là một bài tập quan trọng giúp bạn củng cố kiến thức về đạo hàm. Hy vọng với hướng dẫn chi tiết và các lưu ý trên, bạn sẽ tự tin giải quyết bài tập này một cách hiệu quả. Chúc bạn học tập tốt!

Tài liệu, đề thi và đáp án Toán 12