Logo Header
  1. Môn Toán
  2. Giải bài 37 trang 60 sách bài tập toán 12 - Cánh diều

Giải bài 37 trang 60 sách bài tập toán 12 - Cánh diều

Giải bài 37 trang 60 Sách bài tập Toán 12 - Cánh Diều

Giaitoan.edu.vn xin giới thiệu lời giải chi tiết bài 37 trang 60 Sách bài tập Toán 12 - Cánh Diều. Bài viết này cung cấp phương pháp giải bài tập một cách rõ ràng, dễ hiểu, giúp học sinh nắm vững kiến thức và rèn luyện kỹ năng giải toán.

Chúng tôi luôn cố gắng cung cấp những nội dung chất lượng, chính xác và cập nhật nhất để hỗ trợ tối đa cho quá trình học tập của các bạn.

Tính góc giữa đường thẳng (Delta ) và mặt phẳng (left( P right)) trong mỗi trường hợp sau (làm tròn kết quả đến hàng đơn vị của độ): a) (Delta :left{ begin{array}{l}x = 18 - sqrt 3 t\y = 11\z = 5 + tend{array} right.) (với (t) là tham số) và (left( P right):x - sqrt 3 y - z - 3 = 0); b) (Delta :frac{{x - 8}}{2} = frac{{y - 7}}{{ - 3}} = frac{{z - 6}}{3}) và (left( P right):3x - 4y + 5z - 6 = 0).

Đề bài

Tính góc giữa đường thẳng \(\Delta \) và mặt phẳng \(\left( P \right)\) trong mỗi trường hợp sau (làm tròn kết quả đến hàng đơn vị của độ):

a) \(\Delta :\left\{ \begin{array}{l}x = 18 - \sqrt 3 t\\y = 11\\z = 5 + t\end{array} \right.\) (với \(t\) là tham số) và \(\left( P \right):x - \sqrt 3 y - z - 3 = 0\);

b) \(\Delta :\frac{{x - 8}}{2} = \frac{{y - 7}}{{ - 3}} = \frac{{z - 6}}{3}\) và \(\left( P \right):3x - 4y + 5z - 6 = 0\).

Phương pháp giải - Xem chi tiếtGiải bài 37 trang 60 sách bài tập toán 12 - Cánh diều 1

Đường thẳng \(\Delta \) có vectơ chỉ phương \(\overrightarrow u = \left( {{a_1};{b_1};{c_1}} \right)\) và mặt phẳng \(\left( P \right)\) có vectơ pháp tuyến \(\overrightarrow n = \left( {{a_2};{b_2};{c_2}} \right)\). Khi đó ta có:

\(\sin \left( {\Delta ,\left( P \right)} \right) = \left| {\cos \left( {\overrightarrow u ,\overrightarrow n } \right)} \right| = \frac{{\left| {\overrightarrow u .\overrightarrow n } \right|}}{{\left| {\overrightarrow u } \right|.\left| {\overrightarrow n } \right|}} = \frac{{\left| {{a_1}{a_2} + {b_1}{b_2} + {c_1}{c_2}} \right|}}{{\sqrt {a_1^2 + b_1^2 + c_1^2} .\sqrt {a_2^2 + b_2^2 + c_2^2} }}\).

Lời giải chi tiết

a) Đường thẳng \(\Delta \) có vectơ chỉ phương \(\overrightarrow u = \left( { - \sqrt 3 ;0;1} \right)\).

Mặt phẳng \(\left( P \right)\) có vectơ pháp tuyến \(\overrightarrow n = \left( {1; - \sqrt 3 ; - 1} \right)\).

Sin của góc giữa đường thẳng \(\Delta \) và mặt phẳng \(\left( P \right)\) bằng:

\(\sin \left( {\Delta ,\left( P \right)} \right) = \left| {\cos \left( {\overrightarrow u ,\overrightarrow n } \right)} \right| = \frac{{\left| { - \sqrt 3 .1 + 0.\left( { - \sqrt 3 } \right) + 1.\left( { - 1} \right)} \right|}}{{\sqrt {{{\left( { - \sqrt 3 } \right)}^2} + {0^2} + {1^2}} .\sqrt {{1^2} + {{\left( { - \sqrt 3 } \right)}^2} + {{\left( { - 1} \right)}^2}} }} = \frac{{\sqrt {15} + \sqrt 5 }}{{10}}\).

Vậy \(\left( {\Delta ,\left( P \right)} \right) \approx {38^ \circ }\).

b) Đường thẳng \(\Delta \) có vectơ chỉ phương \(\overrightarrow u = \left( {2; - 3;3} \right)\).

Mặt phẳng \(\left( P \right)\) có vectơ pháp tuyến \(\overrightarrow n = \left( {3; - 4;5} \right)\).

Sin của góc giữa đường thẳng \(\Delta \) và mặt phẳng \(\left( P \right)\) bằng:

\(\sin \left( {\Delta ,\left( P \right)} \right) = \left| {\cos \left( {\overrightarrow u ,\overrightarrow n } \right)} \right| = \frac{{\left| {2.3 - 3.\left( { - 4} \right) + 3.5} \right|}}{{\sqrt {{2^2} + {{\left( { - 3} \right)}^2} + {3^2}} .\sqrt {{3^2} + {{\left( { - 4} \right)}^2} + {5^2}} }} = \frac{{3\sqrt {11} }}{{10}}\).

Vậy \(\left( {\Delta ,\left( P \right)} \right) \approx {84^ \circ }\).

Tự tin bứt phá Kỳ thi THPT Quốc gia môn Toán! Đừng bỏ lỡ Giải bài 37 trang 60 sách bài tập toán 12 - Cánh diều đặc sắc thuộc chuyên mục toán 12 trên nền tảng học toán. Với bộ bài tập toán trung học phổ thông được biên soạn chuyên sâu, bám sát cấu trúc đề thi và chương trình Toán 12, đây chính là "chiến lược vàng" giúp các em tối ưu hóa ôn luyện. Học sinh sẽ không chỉ làm chủ mọi dạng bài thi mà còn nắm vững chiến thuật làm bài hiệu quả, sẵn sàng tự tin chinh phục điểm cao, vững bước vào đại học mơ ước nhờ phương pháp học trực quan, khoa học và hiệu quả học tập vượt trội!

Giải bài 37 trang 60 Sách bài tập Toán 12 - Cánh Diều: Tổng quan

Bài 37 trang 60 Sách bài tập Toán 12 - Cánh Diều thuộc chương trình học Toán 12, tập trung vào việc ôn tập và củng cố kiến thức về các chủ đề đã học. Bài tập này thường yêu cầu học sinh vận dụng các công thức, định lý và kỹ năng giải toán đã được trang bị để giải quyết các bài toán thực tế.

Nội dung bài 37 trang 60 Sách bài tập Toán 12 - Cánh Diều

Bài 37 thường bao gồm các dạng bài tập sau:

  • Dạng 1: Bài tập về đạo hàm và ứng dụng của đạo hàm.
  • Dạng 2: Bài tập về tích phân và ứng dụng của tích phân.
  • Dạng 3: Bài tập về số phức.
  • Dạng 4: Bài tập về hình học không gian.
  • Dạng 5: Bài tập về xác suất và thống kê.

Phương pháp giải bài 37 trang 60 Sách bài tập Toán 12 - Cánh Diều

Để giải bài 37 trang 60 Sách bài tập Toán 12 - Cánh Diều một cách hiệu quả, học sinh cần:

  1. Nắm vững kiến thức lý thuyết: Hiểu rõ các định nghĩa, định lý, công thức và quy tắc liên quan đến các chủ đề đã học.
  2. Phân tích đề bài: Đọc kỹ đề bài, xác định rõ yêu cầu và các dữ kiện đã cho.
  3. Lựa chọn phương pháp giải phù hợp: Dựa vào dạng bài tập và các dữ kiện đã cho để lựa chọn phương pháp giải phù hợp.
  4. Thực hiện các phép tính chính xác: Thực hiện các phép tính một cách cẩn thận và chính xác.
  5. Kiểm tra lại kết quả: Sau khi giải xong bài tập, hãy kiểm tra lại kết quả để đảm bảo tính chính xác.

Ví dụ minh họa giải bài 37 trang 60 Sách bài tập Toán 12 - Cánh Diều

Ví dụ: (Giả sử đây là một bài toán về đạo hàm) Cho hàm số y = x3 - 3x2 + 2. Tìm các điểm cực trị của hàm số.

Giải:

  1. Tính đạo hàm bậc nhất: y' = 3x2 - 6x
  2. Tìm các điểm làm đạo hàm bậc nhất bằng 0: 3x2 - 6x = 0 => x = 0 hoặc x = 2
  3. Tính đạo hàm bậc hai: y'' = 6x - 6
  4. Kiểm tra dấu của đạo hàm bậc hai tại các điểm cực trị:

    • Tại x = 0: y'' = -6 < 0 => Hàm số đạt cực đại tại x = 0
    • Tại x = 2: y'' = 6 > 0 => Hàm số đạt cực tiểu tại x = 2
  5. Kết luận: Hàm số đạt cực đại tại x = 0, y = 2 và đạt cực tiểu tại x = 2, y = -2

Lưu ý khi giải bài 37 trang 60 Sách bài tập Toán 12 - Cánh Diều

Học sinh cần lưu ý những điều sau khi giải bài 37 trang 60 Sách bài tập Toán 12 - Cánh Diều:

  • Đọc kỹ đề bài và hiểu rõ yêu cầu.
  • Sử dụng các công thức và định lý một cách chính xác.
  • Kiểm tra lại kết quả sau khi giải xong.
  • Tham khảo các tài liệu học tập và tìm kiếm sự giúp đỡ từ giáo viên hoặc bạn bè nếu gặp khó khăn.

Tài liệu tham khảo

Để học tập và ôn luyện Toán 12 hiệu quả, học sinh có thể tham khảo các tài liệu sau:

  • Sách giáo khoa Toán 12 - Cánh Diều
  • Sách bài tập Toán 12 - Cánh Diều
  • Các tài liệu ôn thi THPT Quốc gia môn Toán
  • Các trang web học Toán online uy tín như giaitoan.edu.vn

Kết luận

Bài 37 trang 60 Sách bài tập Toán 12 - Cánh Diều là một bài tập quan trọng giúp học sinh củng cố kiến thức và rèn luyện kỹ năng giải toán. Hy vọng với những hướng dẫn và ví dụ minh họa trên, các bạn học sinh sẽ giải bài tập này một cách hiệu quả và đạt kết quả tốt nhất.

Tài liệu, đề thi và đáp án Toán 12