Giaitoan.edu.vn xin giới thiệu lời giải chi tiết bài 37 trang 60 Sách bài tập Toán 12 - Cánh Diều. Bài viết này cung cấp phương pháp giải bài tập một cách rõ ràng, dễ hiểu, giúp học sinh nắm vững kiến thức và rèn luyện kỹ năng giải toán.
Chúng tôi luôn cố gắng cung cấp những nội dung chất lượng, chính xác và cập nhật nhất để hỗ trợ tối đa cho quá trình học tập của các bạn.
Tính góc giữa đường thẳng (Delta ) và mặt phẳng (left( P right)) trong mỗi trường hợp sau (làm tròn kết quả đến hàng đơn vị của độ): a) (Delta :left{ begin{array}{l}x = 18 - sqrt 3 t\y = 11\z = 5 + tend{array} right.) (với (t) là tham số) và (left( P right):x - sqrt 3 y - z - 3 = 0); b) (Delta :frac{{x - 8}}{2} = frac{{y - 7}}{{ - 3}} = frac{{z - 6}}{3}) và (left( P right):3x - 4y + 5z - 6 = 0).
Đề bài
Tính góc giữa đường thẳng \(\Delta \) và mặt phẳng \(\left( P \right)\) trong mỗi trường hợp sau (làm tròn kết quả đến hàng đơn vị của độ):
a) \(\Delta :\left\{ \begin{array}{l}x = 18 - \sqrt 3 t\\y = 11\\z = 5 + t\end{array} \right.\) (với \(t\) là tham số) và \(\left( P \right):x - \sqrt 3 y - z - 3 = 0\);
b) \(\Delta :\frac{{x - 8}}{2} = \frac{{y - 7}}{{ - 3}} = \frac{{z - 6}}{3}\) và \(\left( P \right):3x - 4y + 5z - 6 = 0\).
Phương pháp giải - Xem chi tiết
Đường thẳng \(\Delta \) có vectơ chỉ phương \(\overrightarrow u = \left( {{a_1};{b_1};{c_1}} \right)\) và mặt phẳng \(\left( P \right)\) có vectơ pháp tuyến \(\overrightarrow n = \left( {{a_2};{b_2};{c_2}} \right)\). Khi đó ta có:
\(\sin \left( {\Delta ,\left( P \right)} \right) = \left| {\cos \left( {\overrightarrow u ,\overrightarrow n } \right)} \right| = \frac{{\left| {\overrightarrow u .\overrightarrow n } \right|}}{{\left| {\overrightarrow u } \right|.\left| {\overrightarrow n } \right|}} = \frac{{\left| {{a_1}{a_2} + {b_1}{b_2} + {c_1}{c_2}} \right|}}{{\sqrt {a_1^2 + b_1^2 + c_1^2} .\sqrt {a_2^2 + b_2^2 + c_2^2} }}\).
Lời giải chi tiết
a) Đường thẳng \(\Delta \) có vectơ chỉ phương \(\overrightarrow u = \left( { - \sqrt 3 ;0;1} \right)\).
Mặt phẳng \(\left( P \right)\) có vectơ pháp tuyến \(\overrightarrow n = \left( {1; - \sqrt 3 ; - 1} \right)\).
Sin của góc giữa đường thẳng \(\Delta \) và mặt phẳng \(\left( P \right)\) bằng:
\(\sin \left( {\Delta ,\left( P \right)} \right) = \left| {\cos \left( {\overrightarrow u ,\overrightarrow n } \right)} \right| = \frac{{\left| { - \sqrt 3 .1 + 0.\left( { - \sqrt 3 } \right) + 1.\left( { - 1} \right)} \right|}}{{\sqrt {{{\left( { - \sqrt 3 } \right)}^2} + {0^2} + {1^2}} .\sqrt {{1^2} + {{\left( { - \sqrt 3 } \right)}^2} + {{\left( { - 1} \right)}^2}} }} = \frac{{\sqrt {15} + \sqrt 5 }}{{10}}\).
Vậy \(\left( {\Delta ,\left( P \right)} \right) \approx {38^ \circ }\).
b) Đường thẳng \(\Delta \) có vectơ chỉ phương \(\overrightarrow u = \left( {2; - 3;3} \right)\).
Mặt phẳng \(\left( P \right)\) có vectơ pháp tuyến \(\overrightarrow n = \left( {3; - 4;5} \right)\).
Sin của góc giữa đường thẳng \(\Delta \) và mặt phẳng \(\left( P \right)\) bằng:
\(\sin \left( {\Delta ,\left( P \right)} \right) = \left| {\cos \left( {\overrightarrow u ,\overrightarrow n } \right)} \right| = \frac{{\left| {2.3 - 3.\left( { - 4} \right) + 3.5} \right|}}{{\sqrt {{2^2} + {{\left( { - 3} \right)}^2} + {3^2}} .\sqrt {{3^2} + {{\left( { - 4} \right)}^2} + {5^2}} }} = \frac{{3\sqrt {11} }}{{10}}\).
Vậy \(\left( {\Delta ,\left( P \right)} \right) \approx {84^ \circ }\).
Bài 37 trang 60 Sách bài tập Toán 12 - Cánh Diều thuộc chương trình học Toán 12, tập trung vào việc ôn tập và củng cố kiến thức về các chủ đề đã học. Bài tập này thường yêu cầu học sinh vận dụng các công thức, định lý và kỹ năng giải toán đã được trang bị để giải quyết các bài toán thực tế.
Bài 37 thường bao gồm các dạng bài tập sau:
Để giải bài 37 trang 60 Sách bài tập Toán 12 - Cánh Diều một cách hiệu quả, học sinh cần:
Ví dụ: (Giả sử đây là một bài toán về đạo hàm) Cho hàm số y = x3 - 3x2 + 2. Tìm các điểm cực trị của hàm số.
Giải:
Học sinh cần lưu ý những điều sau khi giải bài 37 trang 60 Sách bài tập Toán 12 - Cánh Diều:
Để học tập và ôn luyện Toán 12 hiệu quả, học sinh có thể tham khảo các tài liệu sau:
Bài 37 trang 60 Sách bài tập Toán 12 - Cánh Diều là một bài tập quan trọng giúp học sinh củng cố kiến thức và rèn luyện kỹ năng giải toán. Hy vọng với những hướng dẫn và ví dụ minh họa trên, các bạn học sinh sẽ giải bài tập này một cách hiệu quả và đạt kết quả tốt nhất.