Logo Header
  1. Môn Toán
  2. Giải bài 44 trang 20 sách bài tập toán 12 - Cánh diều

Giải bài 44 trang 20 sách bài tập toán 12 - Cánh diều

Giải bài 44 trang 20 Sách bài tập Toán 12 - Cánh Diều

Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho bài 44 trang 20 sách bài tập Toán 12 chương trình Cánh Diều. Bài viết này sẽ giúp bạn nắm vững kiến thức và kỹ năng giải toán, tự tin hơn trong các kỳ thi.

Chúng tôi hiểu rằng việc giải các bài tập Toán 12 có thể gặp nhiều khó khăn. Vì vậy, đội ngũ giáo viên giàu kinh nghiệm của giaitoan.edu.vn đã biên soạn lời giải bài 44 trang 20 một cách cẩn thận, đảm bảo tính chính xác và dễ tiếp thu.

Tìm giá trị lớn nhất và giá trị nhỏ nhất của mỗi hàm số sau: a) \(y = {3^x} + {3^{ - x}}\) trên đoạn \(\left[ { - 1;2} \right]\); b) \(y = x.{e^{ - 2{{\rm{x}}^2}}}\) trên đoạn \(\left[ {0;1} \right]\); c) \(y = \ln \left( {{x^2} + 2{\rm{x}} + 3} \right)\) trên đoạn \(\left[ { - 2;3} \right]\); d) \(y = - 3{\rm{x}} + 5 + x\ln {\rm{x}}\) trên đoạn \(\left[ {1;3} \right]\);

Đề bài

Tìm giá trị lớn nhất và giá trị nhỏ nhất của mỗi hàm số sau:

a) \(y = {3^x} + {3^{ - x}}\) trên đoạn \(\left[ { - 1;2} \right]\);

b) \(y = x.{e^{ - 2{{\rm{x}}^2}}}\) trên đoạn \(\left[ {0;1} \right]\);

c) \(y = \ln \left( {{x^2} + 2{\rm{x}} + 3} \right)\) trên đoạn \(\left[ { - 2;3} \right]\);

d) \(y = - 3{\rm{x}} + 5 + x\ln {\rm{x}}\) trên đoạn \(\left[ {1;3} \right]\);

Phương pháp giải - Xem chi tiếtGiải bài 44 trang 20 sách bài tập toán 12 - Cánh diều 1

Cách tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số \(f\left( x \right)\) trên đoạn \(\left[ {a;b} \right]\):

Bước 1. Tìm các điểm \({x_1},{x_2},...,{x_n}\) thuộc khoảng \(\left( {a;b} \right)\) mà tại đó hàm số có đạo hàm bằng 0 hoặc không tồn tại.

Bước 2. Tính \(f\left( {{x_1}} \right),f\left( {{x_2}} \right),...,f\left( {{x_n}} \right),f\left( a \right)\) và \(f\left( b \right)\).

Bước 3. So sánh các giá trị tìm được ở Bước 2.

Số lớn nhất trong các giá trị đó là giá trị lớn nhất của hàm số \(f\left( x \right)\) trên đoạn \(\left[ {a;b} \right]\), số nhỏ nhất trong các giá trị đó là giá trị nhỏ nhất của hàm số \(f\left( x \right)\) trên đoạn \(\left[ {a;b} \right]\).

Lời giải chi tiết

a) Ta có: \(y' = {3^x}.\ln 3 - {3^{ - x}}.\ln 3\)

Khi đó, trên đoạn \(\left[ { - 1;2} \right]\), \(y' = 0\) khi \(x = 0\).

\(y\left( { - 1} \right) = \frac{{10}}{3};y\left( 0 \right) = 2;y\left( 2 \right) = \frac{{82}}{9}\).

Vậy \(\mathop {\max }\limits_{\left[ { - 1;2} \right]} y = \frac{{82}}{9}\) tại \(x = 2\), \(\mathop {\min }\limits_{\left[ { - 1;2} \right]} y = 2\) tại \(x = 0\).

b) Ta có: \(y' = {\left( x \right)^\prime }.{e^{ - 2{{\rm{x}}^2}}} + x.{\left( {{e^{ - 2{{\rm{x}}^2}}}} \right)^\prime } = {e^{ - 2{{\rm{x}}^2}}} + x.\left( { - 4{\rm{x}}} \right).{e^{ - 2{{\rm{x}}^2}}} = {e^{ - 2{{\rm{x}}^2}}}\left( {1 - 4{{\rm{x}}^2}} \right)\)

Khi đó, trên đoạn \(\left[ {0;1} \right]\), \(y' = 0\) khi \(x = \frac{1}{2}\).

\(y\left( 0 \right) = 0;y\left( {\frac{1}{2}} \right) = \frac{1}{{2\sqrt e }};y\left( 1 \right) = \frac{1}{{{e^2}}}\).

Vậy \(\mathop {\max }\limits_{\left[ {0;1} \right]} y = \frac{1}{{2\sqrt e }}\) tại \(x = \frac{1}{2}\), \(\mathop {\min }\limits_{\left[ {0;1} \right]} y = 0\) tại \(x = 0\).

c) Ta có: \(y' = \frac{{{{\left( {{x^2} + 2{\rm{x}} + 3} \right)}^\prime }}}{{{x^2} + 2{\rm{x}} + 3}} = \frac{{2{\rm{x}} + 2}}{{{x^2} + 2{\rm{x}} + 3}}\)

Khi đó, trên đoạn \(\left[ { - 2;3} \right]\), \(y' = 0\) khi \(x = - 1\).

\(y\left( { - 2} \right) = \ln 3;y\left( { - 1} \right) = \ln 2;y\left( 3 \right) = \ln 18\).

Vậy \(\mathop {\max }\limits_{\left[ { - 2;3} \right]} y = \ln 18\) tại \(x = 3\), \(\mathop {\min }\limits_{\left[ { - 2;3} \right]} y = \ln 2\) tại \(x = - 1\).

d) Ta có: \(y = - 3 + {\left( x \right)^\prime }\ln {\rm{x}} + x{\left( {\ln {\rm{x}}} \right)^\prime } = - 3 + \ln {\rm{x}} + x.\frac{1}{x} = \ln {\rm{x}} - 2\)

Khi đó, trên đoạn \(\left[ {1;3} \right]\), \(y' = 0\) không có nghiệm.

\(y\left( 1 \right) = 2;y\left( 3 \right) = 3\ln 3 - 4\).

Vậy \(\mathop {\max }\limits_{\left[ {1;3} \right]} y = 2\) tại \(x = 1\), \(\mathop {\min }\limits_{\left[ {1;3} \right]} y = 3\ln 3 - 4\) tại \(x = 3\).

Tự tin bứt phá Kỳ thi THPT Quốc gia môn Toán! Đừng bỏ lỡ Giải bài 44 trang 20 sách bài tập toán 12 - Cánh diều đặc sắc thuộc chuyên mục toán 12 trên nền tảng đề thi toán. Với bộ bài tập toán thpt được biên soạn chuyên sâu, bám sát cấu trúc đề thi và chương trình Toán 12, đây chính là "chiến lược vàng" giúp các em tối ưu hóa ôn luyện. Học sinh sẽ không chỉ làm chủ mọi dạng bài thi mà còn nắm vững chiến thuật làm bài hiệu quả, sẵn sàng tự tin chinh phục điểm cao, vững bước vào đại học mơ ước nhờ phương pháp học trực quan, khoa học và hiệu quả học tập vượt trội!

Giải bài 44 trang 20 Sách bài tập Toán 12 - Cánh Diều: Hướng dẫn chi tiết

Bài 44 trang 20 sách bài tập Toán 12 Cánh Diều thuộc chương trình học về đạo hàm. Bài tập này thường yêu cầu học sinh vận dụng các kiến thức về đạo hàm của hàm số, đạo hàm của tổng, hiệu, tích, thương của các hàm số để giải quyết các bài toán cụ thể.

Phần 1: Đề bài bài 44 trang 20 Sách bài tập Toán 12 - Cánh Diều

Để bắt đầu, chúng ta cùng xem lại đề bài của bài 44 trang 20:

(Nội dung đề bài sẽ được chèn vào đây - ví dụ: Cho hàm số f(x) = x^3 - 3x^2 + 2. Tính f'(x) và tìm các điểm cực trị của hàm số.)

Phần 2: Phương pháp giải bài tập về đạo hàm

Để giải quyết bài tập về đạo hàm, bạn cần nắm vững các kiến thức sau:

  1. Quy tắc tính đạo hàm: Nắm vững các quy tắc tính đạo hàm của các hàm số cơ bản (hàm số lũy thừa, hàm số lượng giác, hàm số mũ, hàm số logarit) và các quy tắc tính đạo hàm của tổng, hiệu, tích, thương của các hàm số.
  2. Ứng dụng của đạo hàm: Hiểu rõ các ứng dụng của đạo hàm trong việc tìm cực trị của hàm số, xét tính đơn điệu của hàm số, tìm điểm uốn của đồ thị hàm số.
  3. Kỹ năng biến đổi đại số: Rèn luyện kỹ năng biến đổi đại số để đơn giản hóa biểu thức đạo hàm và giải các phương trình, bất phương trình liên quan.

Phần 3: Lời giải chi tiết bài 44 trang 20 Sách bài tập Toán 12 - Cánh Diều

Dưới đây là lời giải chi tiết cho bài 44 trang 20:

(Lời giải chi tiết sẽ được trình bày ở đây, bao gồm các bước giải, giải thích rõ ràng và các lưu ý quan trọng.)

  • Bước 1: Tính đạo hàm f'(x) bằng cách áp dụng quy tắc tính đạo hàm.
  • Bước 2: Tìm các điểm cực trị bằng cách giải phương trình f'(x) = 0.
  • Bước 3: Xác định loại cực trị (cực đại hoặc cực tiểu) bằng cách xét dấu đạo hàm cấp hai hoặc sử dụng phương pháp xét dấu đạo hàm cấp một.

Phần 4: Ví dụ minh họa và bài tập tương tự

Để giúp bạn hiểu rõ hơn về cách giải bài tập về đạo hàm, chúng ta cùng xem xét một số ví dụ minh họa:

(Các ví dụ minh họa sẽ được trình bày ở đây, kèm theo lời giải chi tiết.)

Ngoài ra, bạn có thể tự luyện tập với các bài tập tương tự sau:

  1. Bài 1: ...
  2. Bài 2: ...
  3. Bài 3: ...

Phần 5: Lưu ý khi giải bài tập về đạo hàm

Khi giải bài tập về đạo hàm, bạn cần lưu ý những điều sau:

  • Đọc kỹ đề bài và xác định rõ yêu cầu của bài toán.
  • Nắm vững các quy tắc tính đạo hàm và ứng dụng của đạo hàm.
  • Rèn luyện kỹ năng biến đổi đại số để đơn giản hóa biểu thức đạo hàm.
  • Kiểm tra lại kết quả sau khi giải xong.

Phần 6: Tổng kết

Hy vọng rằng, với hướng dẫn chi tiết này, bạn đã có thể tự tin giải bài 44 trang 20 sách bài tập Toán 12 Cánh Diều. Hãy luyện tập thường xuyên để nắm vững kiến thức và kỹ năng giải toán. Chúc bạn học tập tốt!

Tài liệu, đề thi và đáp án Toán 12