Logo Header
  1. Môn Toán
  2. Giải bài 13 trang 66 sách bài tập toán 12 - Cánh diều

Giải bài 13 trang 66 sách bài tập toán 12 - Cánh diều

Giải bài 13 trang 66 Sách bài tập Toán 12 - Cánh Diều

Giaitoan.edu.vn xin giới thiệu lời giải chi tiết bài 13 trang 66 Sách bài tập Toán 12 Cánh Diều. Bài viết này sẽ cung cấp đáp án chính xác, phương pháp giải rõ ràng, giúp các em học sinh hiểu sâu kiến thức và tự tin làm bài tập.

Chúng tôi luôn cố gắng mang đến những tài liệu học tập chất lượng, hỗ trợ tối đa cho quá trình học tập của các em. Hãy cùng theo dõi và luyện tập để đạt kết quả tốt nhất!

Trong không gian với hệ toạ độ (Oxyz), cho hai điểm (Aleft( { - 2; - 1;4} right)) và (Bleft( {1; - 3; - 1} right)). Toạ độ của vectơ (overrightarrow {AB} ) là: A. (left( { - 3;2;5} right)). B. (left( {3; - 2; - 3} right)). C. (left( {3; - 2; - 5} right)). D. (left( { - 3 - 4;3} right)).

Đề bài

Trong không gian với hệ toạ độ \(Oxyz\), cho hai điểm \(A\left( { - 2; - 1;4} \right)\) và \(B\left( {1; - 3; - 1} \right)\). Toạ độ của vectơ \(\overrightarrow {AB} \) là:

A. \(\left( { - 3;2;5} \right)\)

B. \(\left( {3; - 2; - 3} \right)\)

C. \(\left( {3; - 2; - 5} \right)\)

D. \(\left( { - 3 - 4;3} \right)\)

Phương pháp giải - Xem chi tiếtGiải bài 13 trang 66 sách bài tập toán 12 - Cánh diều 1

Sử dụng toạ độ của vectơ \(\overrightarrow {AB} = \left( {{x_B} - {x_A};{y_B} - {y_A};{z_B} - {z_A}} \right)\).

Lời giải chi tiết

\(\overrightarrow {AB} = \left( {1 - \left( { - 2} \right);\left( { - 3} \right) - \left( { - 1} \right);\left( { - 1} \right) - 4} \right) = \left( {3; - 2; - 5} \right)\).

Chọn C.

Tự tin bứt phá Kỳ thi THPT Quốc gia môn Toán! Đừng bỏ lỡ Giải bài 13 trang 66 sách bài tập toán 12 - Cánh diều đặc sắc thuộc chuyên mục bài toán lớp 12 trên nền tảng môn toán. Với bộ bài tập toán thpt được biên soạn chuyên sâu, bám sát cấu trúc đề thi và chương trình Toán 12, đây chính là "chiến lược vàng" giúp các em tối ưu hóa ôn luyện. Học sinh sẽ không chỉ làm chủ mọi dạng bài thi mà còn nắm vững chiến thuật làm bài hiệu quả, sẵn sàng tự tin chinh phục điểm cao, vững bước vào đại học mơ ước nhờ phương pháp học trực quan, khoa học và hiệu quả học tập vượt trội!

Giải bài 13 trang 66 Sách bài tập Toán 12 - Cánh Diều: Tổng quan

Bài 13 trang 66 Sách bài tập Toán 12 Cánh Diều thuộc chương trình học về đạo hàm. Bài tập này tập trung vào việc vận dụng các quy tắc tính đạo hàm của hàm số, đặc biệt là đạo hàm của hàm hợp và đạo hàm của hàm lượng giác. Việc nắm vững kiến thức về đạo hàm là nền tảng quan trọng để giải quyết các bài toán liên quan đến cực trị, điểm uốn và ứng dụng của đạo hàm trong các lĩnh vực khác.

Nội dung chi tiết bài 13 trang 66 SBT Toán 12 Cánh Diều

Bài 13 bao gồm các câu hỏi và bài tập khác nhau, yêu cầu học sinh:

  • Tính đạo hàm của các hàm số lượng giác phức tạp.
  • Áp dụng quy tắc đạo hàm của hàm hợp để giải quyết các bài toán.
  • Phân tích và giải thích kết quả đạo hàm.
  • Vận dụng đạo hàm để giải các bài toán thực tế.

Lời giải chi tiết từng bài tập

Bài 13.1 trang 66 SBT Toán 12 Cánh Diều

Đề bài: Tính đạo hàm của hàm số y = sin(2x + 1).

Lời giải:

Sử dụng quy tắc đạo hàm của hàm hợp: (u(v(x)))' = u'(v(x)) * v'(x).

Đặt u(v) = sin(v) và v(x) = 2x + 1.

Khi đó, u'(v) = cos(v) và v'(x) = 2.

Vậy, y' = cos(2x + 1) * 2 = 2cos(2x + 1).

Bài 13.2 trang 66 SBT Toán 12 Cánh Diều

Đề bài: Tính đạo hàm của hàm số y = cos(x^2).

Lời giải:

Tương tự như bài 13.1, sử dụng quy tắc đạo hàm của hàm hợp.

Đặt u(v) = cos(v) và v(x) = x^2.

Khi đó, u'(v) = -sin(v) và v'(x) = 2x.

Vậy, y' = -sin(x^2) * 2x = -2xsin(x^2).

Bài 13.3 trang 66 SBT Toán 12 Cánh Diều

Đề bài: Tính đạo hàm của hàm số y = tan(3x - 2).

Lời giải:

Sử dụng quy tắc đạo hàm của hàm hợp và đạo hàm của hàm tan: (tan(x))' = 1/cos^2(x).

Đặt u(v) = tan(v) và v(x) = 3x - 2.

Khi đó, u'(v) = 1/cos^2(v) và v'(x) = 3.

Vậy, y' = (1/cos^2(3x - 2)) * 3 = 3/cos^2(3x - 2).

Mẹo giải nhanh các bài tập đạo hàm

Để giải nhanh các bài tập đạo hàm, bạn nên:

  • Nắm vững các quy tắc tính đạo hàm cơ bản.
  • Luyện tập thường xuyên để làm quen với các dạng bài tập khác nhau.
  • Sử dụng các công cụ hỗ trợ tính đạo hàm trực tuyến để kiểm tra kết quả.
  • Phân tích kỹ đề bài để xác định hàm số và quy tắc đạo hàm phù hợp.

Ứng dụng của đạo hàm trong thực tế

Đạo hàm có rất nhiều ứng dụng trong thực tế, bao gồm:

  • Tính vận tốc và gia tốc của vật chuyển động.
  • Tìm cực trị của hàm số để tối ưu hóa lợi nhuận hoặc chi phí.
  • Xác định điểm uốn của đường cong để phân tích hình dạng của đồ thị.
  • Giải các bài toán liên quan đến tốc độ thay đổi của các đại lượng vật lý.

Kết luận

Bài 13 trang 66 Sách bài tập Toán 12 Cánh Diều là một bài tập quan trọng giúp học sinh củng cố kiến thức về đạo hàm. Hy vọng với lời giải chi tiết và các mẹo giải nhanh mà Giaitoan.edu.vn cung cấp, các em sẽ tự tin hơn trong việc giải quyết các bài toán tương tự.

Tài liệu, đề thi và đáp án Toán 12