Giaitoan.edu.vn xin giới thiệu lời giải chi tiết bài 38 trang 21 sách bài tập Toán 12 Cánh Diều. Bài viết này cung cấp đáp án đầy đủ, phương pháp giải rõ ràng, giúp học sinh nắm vững kiến thức và rèn luyện kỹ năng giải toán.
Chúng tôi luôn cố gắng cung cấp nội dung chính xác, dễ hiểu và cập nhật nhanh chóng nhất để hỗ trợ tối đa cho quá trình học tập của bạn.
Nêu một ví dụ chỉ ra rằng (intlimits_a^b {frac{{fleft( x right)}}{{gleft( x right)}}dx} ne frac{{intlimits_a^b {fleft( x right)dx} }}{{intlimits_a^b {gleft( x right)dx} }}) với (fleft( x right)) và (gleft( x right)) liên tục trên đoạn (left[ {a;b} right],gleft( x right) = 0,forall x in left[ {a;b} right]).
Đề bài
Nêu một ví dụ chỉ ra rằng \(\int\limits_a^b {\frac{{f\left( x \right)}}{{g\left( x \right)}}dx} \ne \frac{{\int\limits_a^b {f\left( x \right)dx} }}{{\int\limits_a^b {g\left( x \right)dx} }}\) với \(f\left( x \right)\) và \(g\left( x \right)\) liên tục trên đoạn \(\left[ {a;b} \right],g\left( x \right) = 0,\forall x \in \left[ {a;b} \right]\).
Phương pháp giải - Xem chi tiết
Sử dụng các công thức:
• \(\int {{x^\alpha }dx} = \frac{{{x^{\alpha + 1}}}}{{\alpha + 1}} + C\).
• \(\int {\frac{1}{x}dx} = \ln \left| x \right| + C\).
Lời giải chi tiết
Lấy \(f\left( x \right) = 1,g\left( x \right) = x,a = 1,b = 2\). Ta có:
\(\begin{array}{l}\int\limits_a^b {\frac{{f\left( x \right)}}{{g\left( x \right)}}dx} = \int\limits_1^2 {\frac{1}{x}dx} = \left. {\ln \left| x \right|} \right|_1^2 = \ln \left| 2 \right| - \ln \left| 1 \right| = \ln 2\\\frac{{\int\limits_a^b {f\left( x \right)dx} }}{{\int\limits_a^b {g\left( x \right)dx} }} = \frac{{\int\limits_1^2 {1dx} }}{{\int\limits_1^2 {xdx} }} = \frac{{\left. x \right|_1^2}}{{\left. {\frac{{{x^2}}}{2}} \right|_1^2}} = \frac{{2 - 1}}{{\frac{{{2^2}}}{2} - \frac{{{1^2}}}{2}}} = \frac{2}{3}\end{array}\)
Vậy \(\int\limits_a^b {\frac{{f\left( x \right)}}{{g\left( x \right)}}dx} \ne \frac{{\int\limits_a^b {f\left( x \right)dx} }}{{\int\limits_a^b {g\left( x \right)dx} }}\).
Bài 38 trang 21 sách bài tập Toán 12 Cánh Diều thuộc chương trình học về đạo hàm. Bài tập này thường tập trung vào việc vận dụng các quy tắc tính đạo hàm của các hàm số cơ bản, hàm hợp, và các hàm lượng giác. Việc nắm vững kiến thức về đạo hàm là vô cùng quan trọng, không chỉ cho kỳ thi THPT Quốc gia mà còn là nền tảng cho các môn học nâng cao ở bậc đại học.
Bài 38 thường bao gồm các dạng bài tập sau:
Để giúp các bạn học sinh giải quyết bài tập một cách hiệu quả, chúng tôi xin trình bày lời giải chi tiết cho từng câu hỏi trong bài 38:
Tính đạo hàm của hàm số f(x) = 3x2 + 2x - 1.
Lời giải:
f'(x) = d/dx (3x2) + d/dx (2x) - d/dx (1)
f'(x) = 6x + 2 - 0
f'(x) = 6x + 2
Tìm đạo hàm của hàm số y = sin(2x).
Lời giải:
y' = cos(2x) * d/dx (2x)
y' = cos(2x) * 2
y' = 2cos(2x)
Để giải bài tập đạo hàm một cách hiệu quả, bạn nên:
Ngoài sách giáo khoa và sách bài tập, bạn có thể tham khảo thêm các tài liệu sau:
Bài 38 trang 21 sách bài tập Toán 12 Cánh Diều là một bài tập quan trọng giúp học sinh củng cố kiến thức về đạo hàm. Hy vọng với lời giải chi tiết và các mẹo giải bài tập hiệu quả mà chúng tôi cung cấp, các bạn học sinh sẽ tự tin hơn trong quá trình học tập và đạt kết quả tốt nhất.