Logo Header
  1. Môn Toán
  2. Giải bài 36 trang 21 sách bài tập toán 12 - Cánh diều

Giải bài 36 trang 21 sách bài tập toán 12 - Cánh diều

Giải bài 36 trang 21 Sách bài tập Toán 12 - Cánh Diều

Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho bài 36 trang 21 sách bài tập Toán 12 chương trình Cánh Diều. Bài viết này sẽ giúp bạn nắm vững kiến thức và kỹ năng giải toán, tự tin hơn trong các kỳ thi.

Chúng tôi hiểu rằng việc giải toán đôi khi có thể gặp khó khăn. Vì vậy, đội ngũ giáo viên giàu kinh nghiệm của giaitoan.edu.vn đã biên soạn lời giải bài 36 trang 21 một cách cẩn thận, đảm bảo tính chính xác và dễ tiếp thu.

Nếu (intlimits_2^3 {fleft( x right)dx} = 3) và (intlimits_2^3 {gleft( x right)dx} = 1) thì (intlimits_2^3 {left[ {fleft( x right) + gleft( x right)} right]dx} ) bằng: A. 4. B. 2. C. ‒2. D. 3.

Đề bài

Nếu \(\int\limits_2^3 {f\left( x \right)dx} = 3\) và \(\int\limits_2^3 {g\left( x \right)dx} = 1\) thì \(\int\limits_2^3 {\left[ {f\left( x \right) + g\left( x \right)} \right]dx} \) bằng:

A. 4.

B. 2.

C. ‒2.

D. 3.

Phương pháp giải - Xem chi tiếtGiải bài 36 trang 21 sách bài tập toán 12 - Cánh diều 1

Sử dụng tính chất của tích phân: \(\int\limits_a^b {\left[ {f\left( x \right) + g\left( x \right)} \right]dx} = \int\limits_a^b {f\left( x \right)dx} + \int\limits_a^b {g\left( x \right)dx} \).

Lời giải chi tiết

\(\int\limits_2^3 {\left[ {f\left( x \right) + g\left( x \right)} \right]dx} = \int\limits_2^3 {f\left( x \right)dx} + \int\limits_2^3 {g\left( x \right)dx} = 3 + 1 = 4\).

Chọn A.

Tự tin bứt phá Kỳ thi THPT Quốc gia môn Toán! Đừng bỏ lỡ Giải bài 36 trang 21 sách bài tập toán 12 - Cánh diều đặc sắc thuộc chuyên mục sgk toán 12 trên nền tảng đề thi toán. Với bộ bài tập lý thuyết toán thpt được biên soạn chuyên sâu, bám sát cấu trúc đề thi và chương trình Toán 12, đây chính là "chiến lược vàng" giúp các em tối ưu hóa ôn luyện. Học sinh sẽ không chỉ làm chủ mọi dạng bài thi mà còn nắm vững chiến thuật làm bài hiệu quả, sẵn sàng tự tin chinh phục điểm cao, vững bước vào đại học mơ ước nhờ phương pháp học trực quan, khoa học và hiệu quả học tập vượt trội!

Giải bài 36 trang 21 Sách bài tập Toán 12 - Cánh Diều: Tổng quan

Bài 36 trang 21 sách bài tập Toán 12 Cánh Diều thuộc chương trình học về Đạo hàm. Bài tập này tập trung vào việc vận dụng các kiến thức về đạo hàm của hàm số để giải quyết các bài toán thực tế, đặc biệt là các bài toán liên quan đến tính đơn điệu của hàm số và tìm cực trị.

Nội dung chi tiết bài 36

Bài 36 bao gồm các dạng bài tập sau:

  • Dạng 1: Tìm đạo hàm của hàm số.
  • Dạng 2: Xác định khoảng đơn điệu của hàm số.
  • Dạng 3: Tìm cực trị của hàm số.
  • Dạng 4: Ứng dụng đạo hàm để giải các bài toán thực tế.

Lời giải chi tiết từng bài tập

Bài 36.1

Đề bài: Tìm đạo hàm của hàm số f(x) = x3 - 3x2 + 2x - 1.

Lời giải:

f'(x) = 3x2 - 6x + 2

Bài 36.2

Đề bài: Xác định khoảng đơn điệu của hàm số f(x) = x2 - 4x + 3.

Lời giải:

f'(x) = 2x - 4

f'(x) = 0 ⇔ x = 2

Xét khoảng (-∞; 2), f'(x) < 0 ⇒ hàm số nghịch biến trên (-∞; 2).

Xét khoảng (2; +∞), f'(x) > 0 ⇒ hàm số đồng biến trên (2; +∞).

Bài 36.3

Đề bài: Tìm cực trị của hàm số f(x) = x3 - 3x.

Lời giải:

f'(x) = 3x2 - 3

f'(x) = 0 ⇔ x = ±1

f''(x) = 6x

f''(-1) = -6 < 0 ⇒ hàm số đạt cực đại tại x = -1, giá trị cực đại là f(-1) = 2.

f''(1) = 6 > 0 ⇒ hàm số đạt cực tiểu tại x = 1, giá trị cực tiểu là f(1) = -2.

Các lưu ý khi giải bài tập về đạo hàm

  • Nắm vững các công thức đạo hàm cơ bản.
  • Sử dụng thành thạo các quy tắc tính đạo hàm (quy tắc tổng, hiệu, tích, thương, hàm hợp).
  • Phân tích kỹ đề bài để xác định đúng dạng bài tập và phương pháp giải phù hợp.
  • Kiểm tra lại kết quả sau khi giải xong.

Tại sao nên chọn giaitoan.edu.vn để học Toán 12?

Giaitoan.edu.vn là một nền tảng học toán online uy tín, cung cấp:

  • Lời giải chi tiết, dễ hiểu cho tất cả các bài tập trong sách giáo khoa và sách bài tập Toán 12.
  • Đội ngũ giáo viên giàu kinh nghiệm, nhiệt tình hỗ trợ học sinh.
  • Giao diện thân thiện, dễ sử dụng.
  • Cập nhật kiến thức mới nhất, đáp ứng yêu cầu của chương trình học.

Kết luận

Hy vọng rằng với lời giải chi tiết và những lưu ý trên, bạn đã có thể tự tin giải bài 36 trang 21 sách bài tập Toán 12 Cánh Diều. Chúc bạn học tập tốt và đạt kết quả cao trong các kỳ thi!

Tài liệu, đề thi và đáp án Toán 12