Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 12. Bài viết này sẽ hướng dẫn bạn giải bài 18 trang 74 sách bài tập Toán 12 - Cánh Diều một cách nhanh chóng và hiệu quả.
Chúng tôi cam kết mang đến cho bạn những giải pháp học tập tốt nhất, giúp bạn tự tin chinh phục môn Toán.
Trong không gian với hệ toạ độ (Oxyz), cho (overrightarrow a = left( {1; - 3; - 2} right),overrightarrow b = left( {4; - 1;2} right)). Toạ độ của vectơ (overrightarrow a - overrightarrow b ) là: A. (left( {3;2;4} right)). B. (left( {5; - 4;0} right)). C. (left( { - 3; - 2; - 4} right)). D. (left( { - 3; - 2;0} right)).
Đề bài
Trong không gian với hệ toạ độ \(Oxyz\), cho \(\overrightarrow a = \left( {1; - 3; - 2} \right),\overrightarrow b = \left( {4; - 1;2} \right)\). Toạ độ của vectơ \(\overrightarrow a - \overrightarrow b \) là:
A. \(\left( {3;2;4} \right)\)
B. \(\left( {5; - 4;0} \right)\)
C. \(\left( { - 3; - 2; - 4} \right)\)
D. \(\left( { - 3; - 2;0} \right)\)
Phương pháp giải - Xem chi tiết
Sử dụng biểu thức toạ độ của phép trừ vectơ:
Nếu \(\overrightarrow u = \left( {{x_1};{y_1};{z_1}} \right)\) và \(\overrightarrow v = \left( {{x_2};{y_2};{z_2}} \right)\) thì \(\overrightarrow u - \overrightarrow v = \left( {{x_1} - {x_2};{y_1} - {y_2};{z_1} - {z_2}} \right)\).
Lời giải chi tiết
\(\overrightarrow a - \overrightarrow b = \left( {1 - 4; - 3 - \left( { - 1} \right); - 2 - 2} \right) = \left( { - 3; - 2; - 4} \right)\).
Chọn C.
Bài 18 trang 74 sách bài tập Toán 12 - Cánh Diều thuộc chương trình học về đạo hàm. Bài tập này thường tập trung vào việc vận dụng các quy tắc tính đạo hàm của hàm số, đặc biệt là đạo hàm của hàm hợp và đạo hàm của hàm lượng giác. Việc nắm vững kiến thức về đạo hàm là vô cùng quan trọng, không chỉ để giải quyết các bài tập trong sách giáo khoa mà còn là nền tảng cho các kiến thức toán học nâng cao hơn.
Bài 18 thường bao gồm các dạng bài tập sau:
Để giúp bạn hiểu rõ hơn về cách giải bài tập này, chúng tôi sẽ trình bày lời giải chi tiết cho từng câu hỏi. Lưu ý rằng, trước khi bắt đầu giải bài tập, bạn nên ôn lại các kiến thức lý thuyết liên quan đến đạo hàm.
Giả sử câu a yêu cầu tính đạo hàm của hàm số y = sin(2x + 1). Để giải bài này, ta sử dụng quy tắc đạo hàm của hàm hợp: (u(v(x)))' = u'(v(x)) * v'(x). Trong trường hợp này, u(t) = sin(t) và v(x) = 2x + 1. Vậy u'(t) = cos(t) và v'(x) = 2. Do đó, y' = cos(2x + 1) * 2 = 2cos(2x + 1).
Giả sử câu b yêu cầu tìm đạo hàm cấp hai của hàm số y = x^3 - 2x^2 + 1. Đầu tiên, ta tính đạo hàm cấp một: y' = 3x^2 - 4x. Sau đó, ta tính đạo hàm cấp hai: y'' = 6x - 4.
Để giải bài tập đạo hàm một cách hiệu quả, bạn có thể tham khảo một số mẹo sau:
Để củng cố kiến thức, bạn có thể tham khảo thêm các bài tập tương tự sau:
Hy vọng rằng, với lời giải chi tiết và các mẹo giải bài tập hiệu quả mà chúng tôi đã cung cấp, bạn sẽ tự tin giải quyết bài 18 trang 74 sách bài tập Toán 12 - Cánh Diều và các bài tập đạo hàm khác. Chúc bạn học tập tốt!
Quy tắc đạo hàm | Công thức |
---|---|
Đạo hàm của hàm số lũy thừa | (x^n)' = nx^(n-1) |
Đạo hàm của hàm số lượng giác | (sin x)' = cos x, (cos x)' = -sin x |
Đạo hàm của hàm số mũ | (e^x)' = e^x |