Bài 55 trang 68 SBT Toán 12 Cánh Diều là một bài tập quan trọng trong chương trình học Toán 12. Bài tập này thường yêu cầu học sinh vận dụng kiến thức về đạo hàm để giải quyết các bài toán thực tế.
Tại giaitoan.edu.vn, chúng tôi cung cấp lời giải chi tiết, dễ hiểu cho bài 55 trang 68 SBT Toán 12 Cánh Diều, giúp bạn nắm vững kiến thức và tự tin làm bài tập.
Vectơ nào sau đây là vectơ pháp tuyến của mặt phẳng (left( P right): - x + 2y - 9z + 7 = 0)? A. (overrightarrow {{n_1}} = left( {1;2;9} right)). B. (overrightarrow {{n_2}} = left( {1; - 2;9} right)). C. (overrightarrow {{n_3}} = left( {1;2; - 9} right)). D. (overrightarrow {{n_4}} = left( { - 1;2;9} right)).
Đề bài
Vectơ nào sau đây là vectơ pháp tuyến của mặt phẳng \(\left( P \right): - x + 2y - 9z + 7 = 0\)?
A. \(\overrightarrow {{n_1}} = \left( {1;2;9} \right)\).
B. \(\overrightarrow {{n_2}} = \left( {1; - 2;9} \right)\).
C. \(\overrightarrow {{n_3}} = \left( {1;2; - 9} \right)\).
D. \(\overrightarrow {{n_4}} = \left( { - 1;2;9} \right)\).
Phương pháp giải - Xem chi tiết
Mặt phẳng \(\left( P \right):Ax + By + C{\rm{z}} + D = 0\) nhận \(\overrightarrow n = \left( {A,B,C} \right)\) làm vectơ pháp tuyến.
Lời giải chi tiết
Mặt phẳng \(\left( P \right): - x + 2y - 9z + 7 = 0\) có vectơ pháp tuyến \(\overrightarrow n = \left( { - 1;2; - 9} \right) = - \left( {1; - 2;9} \right)\).
Vậy vectơ \(\overrightarrow {{n_2}} = \left( {1; - 2;9} \right)\) cũng là vectơ pháp tuyến của mặt phẳng \(\left( P \right)\).
Chọn B.
Bài 55 trang 68 Sách bài tập Toán 12 Cánh Diều thuộc chương trình học về đạo hàm của hàm số. Để giải bài tập này, học sinh cần nắm vững các kiến thức cơ bản về đạo hàm, bao gồm:
Dưới đây là hướng dẫn giải chi tiết bài 55 trang 68 SBT Toán 12 Cánh Diều:
Để tính đạo hàm của hàm số f(x) = x^3 - 3x^2 + 2x - 5, ta áp dụng quy tắc tính đạo hàm của tổng và hiệu, cũng như quy tắc tính đạo hàm của hàm đa thức:
f'(x) = (x^3)' - (3x^2)' + (2x)' - (5)'
f'(x) = 3x^2 - 6x + 2 - 0
f'(x) = 3x^2 - 6x + 2
Để tính đạo hàm của hàm số g(x) = sin(2x) + cos(x), ta áp dụng quy tắc tính đạo hàm của tổng và quy tắc tính đạo hàm của hàm lượng giác:
g'(x) = (sin(2x))' + (cos(x))'
g'(x) = cos(2x) * (2x)' - sin(x)
g'(x) = 2cos(2x) - sin(x)
Để tính đạo hàm của hàm số h(x) = e^x + ln(x), ta áp dụng quy tắc tính đạo hàm của tổng và quy tắc tính đạo hàm của hàm mũ và hàm logarit:
h'(x) = (e^x)' + (ln(x))'
h'(x) = e^x + 1/x
Khi giải bài tập về đạo hàm, học sinh cần lưu ý một số điểm sau:
Đạo hàm có rất nhiều ứng dụng trong thực tế, bao gồm:
Bài 55 trang 68 Sách bài tập Toán 12 Cánh Diều là một bài tập quan trọng giúp học sinh củng cố kiến thức về đạo hàm. Hy vọng với hướng dẫn chi tiết trên, các bạn học sinh có thể tự tin giải bài tập này và đạt kết quả tốt trong môn Toán 12.
Nếu bạn gặp khó khăn trong quá trình học tập, đừng ngần ngại tìm kiếm sự giúp đỡ từ giáo viên hoặc bạn bè. Chúc các bạn học tập tốt!