Giaitoan.edu.vn xin giới thiệu lời giải chi tiết bài 11 trang 9 sách bài tập Toán 12 Cánh Diều. Bài viết này sẽ cung cấp cho bạn các bước giải cụ thể, dễ hiểu, giúp bạn nắm vững kiến thức và tự tin giải các bài tập tương tự.
Chúng tôi luôn cố gắng cung cấp nội dung chính xác, đầy đủ và cập nhật nhất để hỗ trợ quá trình học tập của bạn. Hãy cùng theo dõi và luyện tập để đạt kết quả tốt nhất!
Tìm: a) (int {{2^x}ln 2dx} ); b) (int {2xcos left( {{x^2}} right)dx} ); c) (int {{{cos }^2}left( {frac{x}{2}} right)dx} ).
Đề bài
Tìm:
a) \(\int {{2^x}\ln 2dx} \);
b) \(\int {2x\cos \left( {{x^2}} \right)dx} \);
c) \(\int {{{\cos }^2}\left( {\frac{x}{2}} \right)dx} \).
Phương pháp giải - Xem chi tiết
‒ Sử dụng tính chất của nguyên hàm: Cho hàm số \(y = f\left( x \right),y = g\left( x \right)\) liên tục trên \(K\).
• \(\int {kf\left( x \right)dx} = k\int {f\left( x \right)dx} \) với \(k\) là hằng số khác 0.
• \(\int {\left[ {f\left( x \right) + g\left( x \right)} \right]dx} = \int {f\left( x \right)dx} + \int {g\left( x \right)dx} \).
• \(\int {\left[ {f\left( x \right) - g\left( x \right)} \right]dx} = \int {f\left( x \right)dx} - \int {g\left( x \right)dx} \).
‒ Sử dụng công thức \(\int {F'\left( x \right)dx} = F\left( x \right) + C\) với \(F\left( x \right)\) là hàm số có đạo hàm liên tục.
Lời giải chi tiết
a)
\(\int {{2^x}\ln 2dx} = \int {{{\left( {{2^x}} \right)}^\prime }dx} = {2^x} + C\).
b)
\(\int {2x\cos \left( {{x^2}} \right)dx} = \int {{{\left[ {\sin \left( {{x^2}} \right)} \right]}^\prime }dx} = \sin \left( {{x^2}} \right) + C\).
c)
\(\begin{array}{l}\int {{{\cos }^2}\left( {\frac{x}{2}} \right)dx} = \int {\frac{{1 + \cos x}}{2}dx} = \int {\frac{1}{2}dx} + \frac{1}{2}\int {\cos xdx} = \frac{1}{2}\int {1dx} + \frac{1}{2}\int {\cos xdx} \\ = \frac{1}{2}\int {{{\left( x \right)}^\prime }dx} + \frac{1}{2}\int {{{\left( {\sin x} \right)}^\prime }dx} = \frac{1}{2}x + \frac{1}{2}\sin x + C = \frac{{x + \sin x}}{2} + C\end{array}\).
Bài 11 trang 9 sách bài tập Toán 12 Cánh Diều thuộc chương trình học về đạo hàm. Bài tập này yêu cầu học sinh vận dụng kiến thức về đạo hàm của hàm số để giải quyết các bài toán thực tế. Việc nắm vững các công thức đạo hàm cơ bản và kỹ năng tính đạo hàm là yếu tố then chốt để hoàn thành bài tập này một cách hiệu quả.
Bài 11 trang 9 sách bài tập Toán 12 Cánh Diều thường bao gồm các dạng bài tập sau:
Để giúp các em học sinh hiểu rõ hơn về cách giải bài 11 trang 9 sách bài tập Toán 12 Cánh Diều, chúng tôi xin trình bày lời giải chi tiết như sau:
Cho hàm số f(x) = x2 + 2x + 1. Tính f'(2).
Giải:
Ta có f'(x) = 2x + 2. Thay x = 2 vào, ta được f'(2) = 2(2) + 2 = 6.
Tìm đạo hàm của hàm số g(x) = sin(x) + cos(x).
Giải:
Ta có g'(x) = cos(x) - sin(x).
Để giải bài tập về đạo hàm một cách hiệu quả, các em học sinh cần lưu ý những điều sau:
Đạo hàm có rất nhiều ứng dụng trong thực tế, ví dụ như:
Để học tốt môn Toán 12, các em học sinh có thể tham khảo các tài liệu sau:
Bài 11 trang 9 sách bài tập Toán 12 Cánh Diều là một bài tập quan trọng giúp các em học sinh củng cố kiến thức về đạo hàm. Hy vọng với lời giải chi tiết và các lưu ý trên, các em sẽ tự tin giải bài tập này và đạt kết quả tốt nhất. Chúc các em học tập tốt!
Công thức đạo hàm cơ bản | Ví dụ |
---|---|
(xn)' = nxn-1 | (x3)' = 3x2 |
(sin x)' = cos x | (sin x)' = cos x |
(cos x)' = -sin x | (cos x)' = -sin x |