Logo Header
  1. Môn Toán
  2. Giải bài 26 trang 19 sách bài tập toán 12 - Cánh diều

Giải bài 26 trang 19 sách bài tập toán 12 - Cánh diều

Giải bài 26 trang 19 Sách bài tập Toán 12 - Cánh Diều

Giaitoan.edu.vn xin giới thiệu lời giải chi tiết bài 26 trang 19 Sách bài tập Toán 12 - Cánh Diều. Bài viết này cung cấp đáp án đầy đủ, phương pháp giải rõ ràng, giúp học sinh nắm vững kiến thức và rèn luyện kỹ năng giải toán.

Chúng tôi luôn cố gắng cung cấp nội dung chính xác, dễ hiểu và cập nhật mới nhất để hỗ trợ tối đa cho quá trình học tập của bạn.

Cho (fleft( x right)) là hàm số liên tục trên đoạn (left[ {a;b} right]). Giả sử (Fleft( x right),Gleft( x right)) là các nguyên hàm của (fleft( x right)) trên đoạn (left[ {a;b} right]). Trong các phát biểu sau, phát biểu nào sai? A. (Fleft( a right) - Fleft( b right) = Gleft( a right) - Gleft( b right)). B. (intlimits_a^b {fleft( x right)dx} = Fleft( b right) - Fleft( a right)). C. (intlimits_a^b {fleft( x right)dx} = fleft( b right) - fleft(

Đề bài

Cho \(f\left( x \right)\) là hàm số liên tục trên đoạn \(\left[ {a;b} \right]\). Giả sử \(F\left( x \right),G\left( x \right)\) là các nguyên hàm của \(f\left( x \right)\) trên đoạn \(\left[ {a;b} \right]\). Trong các phát biểu sau, phát biểu nào sai?

A. \(F\left( a \right) - F\left( b \right) = G\left( a \right) - G\left( b \right)\).

B. \(\int\limits_a^b {f\left( x \right)dx} = F\left( b \right) - F\left( a \right)\).

C. \(\int\limits_a^b {f\left( x \right)dx} = f\left( b \right) - f\left( a \right)\).

D. \(\int\limits_a^b {f\left( x \right)dx} = G\left( b \right) - G\left( a \right)\).

Phương pháp giải - Xem chi tiếtGiải bài 26 trang 19 sách bài tập toán 12 - Cánh diều 1

Sử dụng định nghĩa tích phân.

Lời giải chi tiết

Ta có: \(\int\limits_a^b {f\left( x \right)dx} = F\left( b \right) - F\left( a \right)\) và \(\int\limits_a^b {f\left( x \right)dx} = G\left( b \right) - G\left( a \right)\).

Do đó: \(F\left( b \right) - F\left( a \right) = G\left( b \right) - G\left( a \right)\) hay \(F\left( a \right) - F\left( b \right) = G\left( a \right) - G\left( b \right)\).

Chọn C.

Tự tin bứt phá Kỳ thi THPT Quốc gia môn Toán! Đừng bỏ lỡ Giải bài 26 trang 19 sách bài tập toán 12 - Cánh diều đặc sắc thuộc chuyên mục sgk toán 12 trên nền tảng tài liệu toán. Với bộ bài tập toán trung học phổ thông được biên soạn chuyên sâu, bám sát cấu trúc đề thi và chương trình Toán 12, đây chính là "chiến lược vàng" giúp các em tối ưu hóa ôn luyện. Học sinh sẽ không chỉ làm chủ mọi dạng bài thi mà còn nắm vững chiến thuật làm bài hiệu quả, sẵn sàng tự tin chinh phục điểm cao, vững bước vào đại học mơ ước nhờ phương pháp học trực quan, khoa học và hiệu quả học tập vượt trội!

Giải bài 26 trang 19 Sách bài tập Toán 12 - Cánh Diều: Tổng quan

Bài 26 trang 19 Sách bài tập Toán 12 - Cánh Diều thuộc chương trình học Toán 12, tập trung vào việc ôn tập và củng cố kiến thức về các chủ đề đã học. Bài tập này thường bao gồm các dạng bài tập khác nhau, đòi hỏi học sinh phải vận dụng linh hoạt các kiến thức đã học để giải quyết.

Nội dung chi tiết bài 26 trang 19

Bài 26 trang 19 Sách bài tập Toán 12 - Cánh Diều thường bao gồm các dạng bài tập sau:

  • Dạng 1: Bài tập về đạo hàm của hàm số.
  • Dạng 2: Bài tập về ứng dụng đạo hàm để khảo sát hàm số.
  • Dạng 3: Bài tập về cực trị của hàm số.
  • Dạng 4: Bài tập về giá trị lớn nhất và giá trị nhỏ nhất của hàm số.

Hướng dẫn giải chi tiết

Để giải bài 26 trang 19 Sách bài tập Toán 12 - Cánh Diều một cách hiệu quả, bạn cần:

  1. Nắm vững kiến thức cơ bản: Đảm bảo bạn hiểu rõ các khái niệm, định lý và công thức liên quan đến đạo hàm, ứng dụng đạo hàm và cực trị của hàm số.
  2. Phân tích đề bài: Đọc kỹ đề bài, xác định rõ yêu cầu và các thông tin đã cho.
  3. Lựa chọn phương pháp giải phù hợp: Tùy thuộc vào từng dạng bài tập, bạn cần lựa chọn phương pháp giải phù hợp.
  4. Thực hiện các bước giải: Thực hiện các bước giải một cách cẩn thận và chính xác.
  5. Kiểm tra lại kết quả: Sau khi giải xong, hãy kiểm tra lại kết quả để đảm bảo tính chính xác.

Ví dụ minh họa

Ví dụ 1: Tìm đạo hàm của hàm số y = x3 - 2x2 + 5x - 1.

Giải:

y' = 3x2 - 4x + 5

Ví dụ 2: Tìm cực trị của hàm số y = x3 - 3x2 + 2.

Giải:

y' = 3x2 - 6x

Giải phương trình y' = 0, ta được x = 0 hoặc x = 2.

Lập bảng biến thiên, ta thấy hàm số đạt cực đại tại x = 0 và cực tiểu tại x = 2.

Lưu ý khi giải bài tập

  • Luôn viết rõ ràng, mạch lạc các bước giải.
  • Sử dụng đúng các ký hiệu toán học.
  • Kiểm tra lại kết quả để đảm bảo tính chính xác.
  • Tham khảo các tài liệu học tập, sách giáo khoa và các nguồn tài liệu trực tuyến để hiểu rõ hơn về các khái niệm và phương pháp giải.

Tài liệu tham khảo hữu ích

Để hỗ trợ quá trình học tập và giải bài tập, bạn có thể tham khảo các tài liệu sau:

  • Sách giáo khoa Toán 12 - Cánh Diều
  • Sách bài tập Toán 12 - Cánh Diều
  • Các trang web học toán trực tuyến uy tín
  • Các video bài giảng Toán 12 trên YouTube

Kết luận

Bài 26 trang 19 Sách bài tập Toán 12 - Cánh Diều là một bài tập quan trọng giúp học sinh củng cố kiến thức và rèn luyện kỹ năng giải toán. Hy vọng với hướng dẫn chi tiết và các ví dụ minh họa trên, bạn sẽ giải bài tập này một cách hiệu quả và đạt kết quả tốt nhất.

Tài liệu, đề thi và đáp án Toán 12