Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 12. Bài viết này sẽ hướng dẫn bạn giải bài 74 trang 71 Sách bài tập Toán 12 - Cánh Diều một cách nhanh chóng và hiệu quả.
Chúng tôi hiểu rằng việc giải toán đôi khi có thể gặp khó khăn, đặc biệt là với những bài tập phức tạp. Vì vậy, chúng tôi luôn cố gắng trình bày lời giải một cách rõ ràng, logic và dễ tiếp thu nhất.
Cho hai đường thẳng ({Delta _1}:left{ begin{array}{l}x = 1 + 4{t_1}\y = 9 + {t_1}\z = 1 - 6{t_1}end{array} right.) và ({Delta _2}:left{ begin{array}{l}x = - 4 + 3{t_2}\y = 1 - 18{t_2}\z = - 5 - {t_2}end{array} right.) (({t_1},{t_2}) là tham số). Chứng minh rằng ({Delta _1} bot {Delta _2}).
Đề bài
Cho hai đường thẳng \({\Delta _1}:\left\{ \begin{array}{l}x = 1 + 4{t_1}\\y = 9 + {t_1}\\z = 1 - 6{t_1}\end{array} \right.\) và \({\Delta _2}:\left\{ \begin{array}{l}x = - 4 + 3{t_2}\\y = 1 - 18{t_2}\\z = - 5 - {t_2}\end{array} \right.\) (\({t_1},{t_2}\) là tham số). Chứng minh rằng \({\Delta _1} \bot {\Delta _2}\).
Phương pháp giải - Xem chi tiết
Hai đường thẳng \({\Delta _1}\) và \({\Delta _2}\) có vectơ chỉ phương lần lượt là \(\overrightarrow {{u_1}} = \left( {{a_1};{b_1};{c_1}} \right),\overrightarrow {{u_2}} = \left( {{a_2};{b_2};{c_2}} \right)\). Khi đó ta có: \({\Delta _1} \bot {\Delta _2} \Leftrightarrow {a_1}{a_2} + {b_1}{b_2} + {c_1}{c_2} = 0\).
Lời giải chi tiết
Đường thẳng \({\Delta _1}\) có vectơ chỉ phương \(\overrightarrow {{u_1}} = \left( {4;1; - 6} \right)\).
Đường thẳng \({\Delta _2}\) có vectơ chỉ phương \(\overrightarrow {{u_2}} = \left( {3; - 18; - 1} \right)\).
Ta có: \( - 4.3 + 1.\left( { - 18} \right) + \left( { - 6} \right).\left( { - 1} \right) = 0\).
Vậy \({\Delta _1} \bot {\Delta _2}\).
Bài 74 trang 71 Sách bài tập Toán 12 - Cánh Diều thuộc chương trình học Toán 12, tập trung vào kiến thức về số phức. Bài tập này thường yêu cầu học sinh vận dụng các công thức và tính chất của số phức để giải quyết các bài toán cụ thể. Việc nắm vững lý thuyết và kỹ năng giải toán là yếu tố then chốt để hoàn thành tốt bài tập này.
Bài 74 thường bao gồm các dạng bài tập sau:
Để giải bài 74 trang 71 Sách bài tập Toán 12 - Cánh Diều một cách hiệu quả, bạn cần:
Ví dụ: Cho số phức z = 3 + 4i. Tìm phần thực và phần ảo của z.
Lời giải:
Phần thực của z là Re(z) = 3.
Phần ảo của z là Im(z) = 4.
Để giải nhanh các bài tập về số phức, bạn có thể áp dụng một số mẹo sau:
Để học tốt môn Toán 12, bạn có thể tham khảo các tài liệu sau:
Bài 74 trang 71 Sách bài tập Toán 12 - Cánh Diều là một bài tập quan trọng giúp bạn củng cố kiến thức về số phức. Hy vọng với hướng dẫn chi tiết và các mẹo giải nhanh trên đây, bạn sẽ tự tin giải quyết bài tập này một cách hiệu quả. Chúc bạn học tốt!