Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho bài 46 trang 65 sách bài tập Toán 12 chương trình Cánh Diều. Bài viết này sẽ giúp bạn nắm vững kiến thức và kỹ năng giải toán, tự tin hơn trong các kỳ thi.
Chúng tôi hiểu rằng việc giải các bài tập Toán 12 có thể gặp nhiều khó khăn. Vì vậy, đội ngũ giáo viên giàu kinh nghiệm của giaitoan.edu.vn đã biên soạn lời giải bài 46 trang 65 một cách cẩn thận, đảm bảo tính chính xác và dễ tiếp thu.
Bán kính của mặt cầu (left( S right):{x^2} + {y^2} + {z^2} - 10{rm{x}} - 4y - 2z + 5 = 0) bằng: A. 25. B. 10. C. 5. D. 225.
Đề bài
Bán kính của mặt cầu \(\left( S \right):{x^2} + {y^2} + {z^2} - 10{\rm{x}} - 4y - 2z + 5 = 0\) bằng:
A. 25.
B. 10.
C. 5.
D. 225.
Phương pháp giải - Xem chi tiết
Phương trình \({x^2} + {y^2} + {z^2} - 2{\rm{ax}} - 2by - 2cz + d = 0\) là phương trình mặt cầu khi và chỉ khi \({a^2} + {b^2} + {c^2} - d > 0\). Khi đó mặt cầu có tâm \(I\left( {a;b;c} \right)\) và bán kính \(R = \sqrt {{a^2} + {b^2} + {c^2} - d} \).
Lời giải chi tiết
Mặt cầu \(\left( S \right):{x^2} + {y^2} + {z^2} - 10{\rm{x}} - 4y - 2z + 5 = 0\) có bán kính \(R = \sqrt {{5^2} + {2^2} + {1^2} - 5} = 5\).
Chọn C.
Bài 46 trang 65 sách bài tập Toán 12 Cánh Diều thuộc chương trình học về đạo hàm. Bài tập này thường yêu cầu học sinh vận dụng các kiến thức về đạo hàm của hàm số, đạo hàm của tổng, hiệu, tích, thương của các hàm số, và đạo hàm của hàm hợp để giải quyết các bài toán thực tế.
Trước khi đi vào giải chi tiết, chúng ta cần phân tích kỹ đề bài để xác định rõ yêu cầu và phương pháp giải phù hợp. Thông thường, bài 46 trang 65 sẽ yêu cầu tính đạo hàm của một hàm số phức tạp hoặc tìm điều kiện để hàm số có đạo hàm. Để giải quyết các bài toán này, học sinh cần nắm vững các quy tắc tính đạo hàm và các công thức liên quan.
Dưới đây là lời giải chi tiết cho bài 46 trang 65 sách bài tập Toán 12 Cánh Diều. Chúng tôi sẽ trình bày từng bước giải một cách rõ ràng, kèm theo các giải thích chi tiết để bạn dễ dàng theo dõi và hiểu bài.
(Ví dụ, giả sử đề bài là: Tính đạo hàm của hàm số f(x) = x^3 + 2x^2 - 5x + 1)
(Tiếp tục giải các bài tập khác tương tự, trình bày chi tiết từng bước)
Ngoài bài 46 trang 65, sách bài tập Toán 12 Cánh Diều còn có nhiều bài tập tương tự về đạo hàm. Dưới đây là một số dạng bài tập thường gặp và các mẹo giải:
Mẹo giải:
Đạo hàm là một khái niệm quan trọng trong Toán học và có nhiều ứng dụng trong thực tế, bao gồm:
Để củng cố kiến thức và kỹ năng giải bài tập về đạo hàm, bạn có thể luyện tập thêm với các bài tập tương tự trong sách bài tập Toán 12 Cánh Diều hoặc trên các trang web học Toán online.
Bài 46 trang 65 sách bài tập Toán 12 Cánh Diều là một bài tập quan trọng giúp học sinh rèn luyện kỹ năng tính đạo hàm và vận dụng các kiến thức về đạo hàm để giải quyết các bài toán thực tế. Hy vọng rằng với lời giải chi tiết và các hướng dẫn trong bài viết này, bạn sẽ tự tin hơn trong việc học Toán 12.