Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho bài 3 trang 60 sách bài tập Toán 12 chương trình Cánh Diều. Bài viết này sẽ giúp bạn nắm vững kiến thức và kỹ năng giải toán, tự tin hơn trong các kỳ thi.
Chúng tôi hiểu rằng việc giải toán đôi khi có thể gặp khó khăn. Vì vậy, đội ngũ giáo viên giàu kinh nghiệm của giaitoan.edu.vn đã biên soạn lời giải bài 3 trang 60 một cách cẩn thận, đảm bảo tính chính xác và dễ tiếp thu.
Phát biểu nào nào sau đây là đúng? A. Với hai vectơ bất kì (overrightarrow a ,overrightarrow b ) và số thực (k), ta có: (kleft( {overrightarrow a + overrightarrow b } right) = koverrightarrow a + koverrightarrow b ). B. Với hai vectơ bất kì (overrightarrow a ,overrightarrow b ) và số thực (k), ta có: (kleft( {overrightarrow a + overrightarrow b } right) = overrightarrow a k + overrightarrow b k). C. Với hai vectơ bất kì (overrightarrow a ,overrightarrow b )
Đề bài
Phát biểu nào nào sau đây là đúng?
A. Với hai vectơ bất kì \(\overrightarrow a ,\overrightarrow b \) và số thực \(k\), ta có: \(k\left( {\overrightarrow a + \overrightarrow b } \right) = k\overrightarrow a + k\overrightarrow b \).
B. Với hai vectơ bất kì \(\overrightarrow a ,\overrightarrow b \) và số thực \(k\), ta có: \(k\left( {\overrightarrow a + \overrightarrow b } \right) = \overrightarrow a k + \overrightarrow b k\).
C. Với hai vectơ bất kì \(\overrightarrow a ,\overrightarrow b \) và số thực \(k\), ta có: \(\left( {\overrightarrow a + \overrightarrow b } \right)k = k\overrightarrow a + \overrightarrow b k\).
D. Với hai vectơ bất kì \(\overrightarrow a ,\overrightarrow b \) và số thực \(k\), ta có: \(k\left( {\overrightarrow a + \overrightarrow b } \right) = k\overrightarrow a + \overrightarrow b k\).
Phương pháp giải - Xem chi tiết
Sử dụng tính chất của phép nhân một số với một vectơ.
Lời giải chi tiết
Theo tính chất của phép nhân một số với một vectơ, ta có: Với hai vectơ bất kì \(\overrightarrow a ,\overrightarrow b \) và số thực \(k\), ta có: \(k\left( {\overrightarrow a + \overrightarrow b } \right) = k\overrightarrow a + k\overrightarrow b \).
Chọn A.
Bài 3 trang 60 sách bài tập Toán 12 Cánh Diều thuộc chương trình học về đạo hàm. Bài tập này thường tập trung vào việc vận dụng các quy tắc tính đạo hàm của các hàm số cơ bản như hàm đa thức, hàm lượng giác, hàm mũ, hàm logarit và các phép toán trên hàm số.
Bài 3 thường bao gồm các dạng bài tập sau:
Để giải bài 3 trang 60 sách bài tập Toán 12 Cánh Diều một cách hiệu quả, bạn cần nắm vững các kiến thức sau:
Dưới đây là ví dụ minh họa cách giải một bài tập trong bài 3 trang 60:
Ví dụ: Tính đạo hàm của hàm số f(x) = x3 + 2x2 - 5x + 1
Giải:
f'(x) = (x3)' + (2x2)' - (5x)' + (1)'
f'(x) = 3x2 + 4x - 5 + 0
f'(x) = 3x2 + 4x - 5
Việc giải bài tập về đạo hàm có vai trò quan trọng trong việc giúp học sinh:
Hy vọng với hướng dẫn chi tiết này, bạn sẽ tự tin hơn khi giải bài 3 trang 60 sách bài tập Toán 12 Cánh Diều. Chúc bạn học tập tốt!