Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 12. Bài viết này sẽ hướng dẫn bạn giải bài 13 trang 48 sách bài tập Toán 12 - Cánh Diều một cách nhanh chóng và hiệu quả.
Chúng tôi hiểu rằng việc giải toán đôi khi có thể gặp khó khăn, đặc biệt là với những bài tập phức tạp. Vì vậy, chúng tôi đã biên soạn lời giải chi tiết, kèm theo các bước giải rõ ràng, giúp bạn nắm vững kiến thức và kỹ năng giải toán.
Lập phương trình mặt phẳng (left( P right)) đi qua điểm (Kleft( {4; - 3;7} right)) và song song với mặt phẳng (left( Q right):3x - 2y + 4z + 7 = 0).
Đề bài
Lập phương trình mặt phẳng \(\left( P \right)\) đi qua điểm \(K\left( {4; - 3;7} \right)\) và song song với mặt phẳng \(\left( Q \right):3x - 2y + 4z + 7 = 0\).
Phương pháp giải - Xem chi tiết
Phương trình mặt phẳng \(\left( P \right)\) đi qua điểm \(I\left( {{x_0};{y_0};{z_0}} \right)\) và nhận \(\overrightarrow n = \left( {A;B;C} \right)\) làm vectơ pháp tuyến có phương trình tổng quát là: \(Ax + By + C{\rm{z}} + D = 0\) với \(D = - A{x_0} - B{y_0} - C{{\rm{z}}_0}\).
Lời giải chi tiết
Mặt phẳng \(\left( Q \right)\) có vectơ pháp tuyến \(\overrightarrow n = \left( {3; - 2;4} \right)\).
Vì \(\left( P \right)\parallel \left( Q \right)\) nên \(\overrightarrow n = \left( {3; - 2;4} \right)\) là một vectơ pháp tuyến của \(\left( P \right)\).
Phương trình mặt phẳng \(\left( P \right)\) là:
\(3\left( {x - 4} \right) - 2\left( {y + 3} \right) + 4\left( {z - 7} \right) = 0 \Leftrightarrow 3x - 2y + 4z - 46 = 0\).
Bài 13 trang 48 sách bài tập Toán 12 - Cánh Diều thuộc chương trình học về đạo hàm. Bài tập này thường tập trung vào việc vận dụng các quy tắc tính đạo hàm của các hàm số cơ bản, cũng như các hàm hợp. Việc nắm vững kiến thức về đạo hàm là vô cùng quan trọng, không chỉ cho kỳ thi THPT Quốc gia mà còn là nền tảng cho các môn học ở bậc đại học.
Bài 13 thường bao gồm các dạng bài tập sau:
Để giải bài tập này một cách hiệu quả, bạn cần:
Để cung cấp lời giải chi tiết, chúng ta cần biết chính xác nội dung của bài tập. Tuy nhiên, dưới đây là một ví dụ minh họa cách giải một dạng bài tập thường gặp:
Giải:
Áp dụng quy tắc đạo hàm của hàm số đa thức, ta có:
f'(x) = 3x2 + 4x - 5
Để củng cố kiến thức, bạn có thể luyện tập thêm các bài tập tương tự sau:
Bài 13 trang 48 sách bài tập Toán 12 - Cánh Diều là một bài tập quan trọng giúp bạn rèn luyện kỹ năng tính đạo hàm. Hy vọng rằng với những hướng dẫn chi tiết và ví dụ minh họa trên, bạn sẽ giải bài tập này một cách dễ dàng và hiệu quả. Chúc bạn học tốt!
Quy tắc | Công thức |
---|---|
Đạo hàm của hàm số lũy thừa | (xn)' = nxn-1 |
Đạo hàm của hàm số lượng giác | (sin(x))' = cos(x), (cos(x))' = -sin(x) |
Đạo hàm của hàm số mũ | (ex)' = ex |
Đạo hàm của hàm số logarit | (ln(x))' = 1/x |