Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 12. Bài viết này sẽ hướng dẫn bạn giải bài 65 trang 26 Sách bài tập Toán 12 - Cánh Diều một cách nhanh chóng và hiệu quả.
Chúng tôi hiểu rằng việc giải toán đôi khi có thể gặp khó khăn, đặc biệt là với những bài tập phức tạp. Vì vậy, chúng tôi luôn cố gắng trình bày lời giải một cách rõ ràng, logic và dễ tiếp thu nhất.
Tìm tiệm cận đứng, tiệm cận ngang, tiệm cận xiên (nếu có) của đồ thị mỗi hàm số sau: a) (y = frac{{3{rm{x}} + 5}}{{{x^2} - 4}}); b) (y = frac{{ - {x^2} - 1}}{{4{{rm{x}}^2} + 9}}); c) (y = frac{{3{x^2} + x}}{{1 - x}}).
Đề bài
Tìm tiệm cận đứng, tiệm cận ngang, tiệm cận xiên (nếu có) của đồ thị mỗi hàm số sau:
a) \(y = \frac{{3{\rm{x}} + 5}}{{{x^2} - 4}}\);
b) \(y = \frac{{ - {x^2} - 1}}{{4{{\rm{x}}^2} + 9}}\);
c) \(y = \frac{{3{x^2} + x}}{{1 - x}}\).
Phương pháp giải - Xem chi tiết
‒ Tìm tiệm cận đứng: Tính \(\mathop {\lim }\limits_{x \to x_0^ - } f\left( x \right)\) hoặc \(\mathop {\lim }\limits_{x \to x_0^ + } f\left( x \right)\), nếu một trong các giới hạn sau thoả mãn:
\(\mathop {\lim }\limits_{x \to x_0^ - } f\left( x \right) = + \infty ;\mathop {\lim }\limits_{x \to x_0^ - } f\left( x \right) = - \infty ;\mathop {\lim }\limits_{x \to x_0^ + } f\left( x \right) = + \infty ;\mathop {\lim }\limits_{x \to x_0^ + } f\left( x \right) = - \infty \)
thì đường thẳng \(x = {x_0}\) là đường tiệm cận đứng.
‒ Tìm tiệm cận ngang: Nếu \(\mathop {\lim }\limits_{x \to + \infty } f\left( x \right) = {y_0}\) hoặc \(\mathop {\lim }\limits_{x \to - \infty } f\left( x \right) = {y_0}\) thì đường thẳng \(y = {y_0}\) là đường tiệm cận ngang.
‒ Tìm tiệm cận xiên \(y = ax + b\left( {a \ne 0} \right)\):
\(a = \mathop {\lim }\limits_{x \to + \infty } \frac{{f\left( x \right)}}{x}\) và \(b = \mathop {\lim }\limits_{x \to + \infty } \left[ {f\left( x \right) - ax} \right]\) hoặc
\(a = \mathop {\lim }\limits_{x \to - \infty } \frac{{f\left( x \right)}}{x}\) và \(b = \mathop {\lim }\limits_{x \to - \infty } \left[ {f\left( x \right) - ax} \right]\)
Lời giải chi tiết
a) Hàm số có tập xác định là \(\mathbb{R}\backslash \left\{ { - 2;2} \right\}\).
Ta có:
• \(\mathop {\lim }\limits_{x \to - {2^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to - {2^ - }} \frac{{3{\rm{x}} + 5}}{{{x^2} - 4}} = - \infty ;\mathop {\lim }\limits_{x \to - {2^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to - {2^ + }} \frac{{3{\rm{x}} + 5}}{{{x^2} - 4}} = + \infty \)
\(\mathop {\lim }\limits_{x \to {2^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {2^ - }} \frac{{3{\rm{x}} + 5}}{{{x^2} - 4}} = - \infty ;\mathop {\lim }\limits_{x \to {2^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {2^ + }} \frac{{3{\rm{x}} + 5}}{{{x^2} - 4}} = + \infty \)
Vậy \(x = - 2\) và \({\rm{x}} = 2\) là các tiệm cận đứng của đồ thị hàm số đã cho.
• \(\mathop {\lim }\limits_{x \to + \infty } f\left( x \right) = \mathop {\lim }\limits_{x \to + \infty } \frac{{3{\rm{x}} + 5}}{{{x^2} - 4}} = 0;\mathop {\lim }\limits_{x \to - \infty } f\left( x \right) = \mathop {\lim }\limits_{x \to - \infty } \frac{{3{\rm{x}} + 5}}{{{x^2} - 4}} = 0\)
Vậy \(y = 0\) là tiệm cận ngang của đồ thị hàm số đã cho.
b) Hàm số có tập xác định là \(\mathbb{R}\). Vậy hàm số không có tiệm cận đứng.
• \(\mathop {\lim }\limits_{x \to + \infty } f\left( x \right) = \mathop {\lim }\limits_{x \to + \infty } \frac{{ - {x^2} - 1}}{{4{{\rm{x}}^2} + 9}} = - \frac{1}{4};\mathop {\lim }\limits_{x \to - \infty } f\left( x \right) = \mathop {\lim }\limits_{x \to - \infty } \frac{{ - {x^2} - 1}}{{4{{\rm{x}}^2} + 9}} = - \frac{1}{4}\)
Vậy \(y = - \frac{1}{4}\) là tiệm cận ngang của đồ thị hàm số đã cho.
c) Hàm số có tập xác định là \(\mathbb{R}\backslash \left\{ 1 \right\}\).
Ta có:
• \(\mathop {\lim }\limits_{x \to {1^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {1^ - }} \frac{{3{x^2} + x}}{{1 - x}} = + \infty ;\mathop {\lim }\limits_{x \to {1^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {1^ + }} \frac{{3{x^2} + x}}{{1 - x}} = - \infty \)
Vậy \({\rm{x}} = 1\) là tiệm cận đứng của đồ thị hàm số đã cho.
• \(\mathop {\lim }\limits_{x \to + \infty } f\left( x \right) = \mathop {\lim }\limits_{x \to + \infty } \frac{{3{x^2} + x}}{{1 - x}} = - \infty ;\mathop {\lim }\limits_{x \to - \infty } f\left( x \right) = \mathop {\lim }\limits_{x \to - \infty } \frac{{3{x^2} + x}}{{1 - x}} = + \infty \)
Vậy hàm số không có tiệm cận ngang.
• \(a = \mathop {\lim }\limits_{x \to + \infty } \frac{{f\left( x \right)}}{x} = \mathop {\lim }\limits_{x \to + \infty } \frac{{3{x^2} + x}}{{x\left( {1 - x} \right)}} = - 3\) và
\(b = \mathop {\lim }\limits_{x \to + \infty } \left[ {f\left( x \right) + 3x} \right] = \mathop {\lim }\limits_{x \to + \infty } \left[ {\frac{{3{x^2} + x}}{{1 - x}} + 3x} \right] = \mathop {\lim }\limits_{x \to + \infty } \frac{{4{\rm{x}}}}{{1 - x}} = - 4\)
Vậy đường thẳng \(y = - 3{\rm{x}} - 4\) là tiệm cận xiên của đồ thị hàm số đã cho.
Bài 65 trang 26 Sách bài tập Toán 12 - Cánh Diều thuộc chương trình học Toán 12, tập trung vào việc ôn tập và củng cố kiến thức về các chủ đề đã học. Bài tập này thường yêu cầu học sinh vận dụng các công thức, định lý và kỹ năng giải toán đã được trang bị để giải quyết các bài toán thực tế.
Bài 65 thường bao gồm các dạng bài tập sau:
Để minh họa, chúng ta sẽ cùng giải một ví dụ cụ thể. Giả sử bài tập yêu cầu tính đạo hàm của hàm số f(x) = x3 - 2x2 + 5x - 1.
Để giải bài tập Toán 12 một cách hiệu quả, bạn có thể tham khảo một số mẹo sau:
Việc giải bài tập Toán 12 không chỉ giúp bạn củng cố kiến thức mà còn rèn luyện tư duy logic, khả năng giải quyết vấn đề và kỹ năng tính toán. Đây là những kỹ năng quan trọng không chỉ trong học tập mà còn trong cuộc sống.
Hy vọng rằng bài viết này đã cung cấp cho bạn những thông tin hữu ích và giúp bạn giải bài 65 trang 26 Sách bài tập Toán 12 - Cánh Diều một cách dễ dàng và hiệu quả. Chúc bạn học tập tốt!