Logo Header
  1. Môn Toán
  2. Giải bài 11 trang 12 sách bài tập toán 12 - Cánh diều

Giải bài 11 trang 12 sách bài tập toán 12 - Cánh diều

Giải bài 11 trang 12 Sách bài tập Toán 12 - Cánh Diều

Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 12 sách Cánh Diều. Bài viết này sẽ hướng dẫn bạn giải bài 11 trang 12 một cách đầy đủ và chính xác, giúp bạn nắm vững kiến thức và tự tin hơn trong quá trình học tập.

Chúng tôi hiểu rằng việc giải toán đôi khi có thể gặp khó khăn. Vì vậy, chúng tôi luôn cố gắng trình bày lời giải một cách rõ ràng, logic và có kèm theo các giải thích chi tiết để bạn có thể hiểu được bản chất của vấn đề.

Cho hàm số \(y = f\left( x \right)\) có đạo hàm \(f'\left( x \right) = {x^2}{\left( {{x^2} - 1} \right)^2}\left( {x - 2} \right),\forall x \in \mathbb{R}\). Số điểm cực trị của hàm số đã cho là: A. 1. B. 2. C. 3. D. 4.

Đề bài

Cho hàm số \(y = f\left( x \right)\) có đạo hàm \(f'\left( x \right) = {x^2}{\left( {{x^2} - 1} \right)^2}\left( {x - 2} \right),\forall x \in \mathbb{R}\). Số điểm cực trị của hàm số đã cho là:

A. 1. B. 2. C. 3. D. 4.

Phương pháp giải - Xem chi tiếtGiải bài 11 trang 12 sách bài tập toán 12 - Cánh diều 1

Các bước để tìm điểm cực trị của hàm số \(f\left( x \right)\):

Bước 1. Tìm tập xác định của hàm số \(f\left( x \right)\).

Bước 2. Tính đạo hàm \(f'\left( x \right)\). Tìm các điểm \({x_i}\left( {i = 1,2,...,n} \right)\) mà tại đó hàm số có đạo hàm bằng 0 hoặc không tồn tại.

Bước 3. Sắp xếp các điểm \({x_i}\) theo thứ tự tăng dần và lập bảng biến thiên.

Bước 4. Căn cứ vào bảng biến thiên, nêu kết luận về các điểm cực trị của hàm số.

Lời giải chi tiết

Hàm số có tập xác định là \(\mathbb{R}\).

Ta có: \(y' = 0\) khi \(x = 0;x = - 1;x = 1\) hoặc \(x = 2\).

Bảng xét dấu đạo hàm của hàm số:

Giải bài 11 trang 12 sách bài tập toán 12 - Cánh diều 2

Dựa vào bảng xét dấu đạo hàm ta có: Hàm số đạt cực tiểu tại \(x = 2\).

Vậy hàm số có 1 điểm cực trị.

Chọn A.

Tự tin bứt phá Kỳ thi THPT Quốc gia môn Toán! Đừng bỏ lỡ Giải bài 11 trang 12 sách bài tập toán 12 - Cánh diều đặc sắc thuộc chuyên mục sgk toán 12 trên nền tảng học toán. Với bộ bài tập lý thuyết toán thpt được biên soạn chuyên sâu, bám sát cấu trúc đề thi và chương trình Toán 12, đây chính là "chiến lược vàng" giúp các em tối ưu hóa ôn luyện. Học sinh sẽ không chỉ làm chủ mọi dạng bài thi mà còn nắm vững chiến thuật làm bài hiệu quả, sẵn sàng tự tin chinh phục điểm cao, vững bước vào đại học mơ ước nhờ phương pháp học trực quan, khoa học và hiệu quả học tập vượt trội!

Giải bài 11 trang 12 Sách bài tập Toán 12 - Cánh Diều: Tổng quan

Bài 11 trang 12 sách bài tập Toán 12 Cánh Diều thuộc chương trình học về đạo hàm. Bài tập này thường yêu cầu học sinh vận dụng các kiến thức về đạo hàm của hàm số, quy tắc tính đạo hàm, và các ứng dụng của đạo hàm để giải quyết các bài toán cụ thể. Việc nắm vững kiến thức nền tảng và luyện tập thường xuyên là chìa khóa để giải quyết thành công bài tập này.

Nội dung bài tập

Bài 11 trang 12 thường bao gồm các dạng bài tập sau:

  • Tính đạo hàm của hàm số tại một điểm cho trước.
  • Tìm đạo hàm của hàm số.
  • Xác định các điểm cực trị của hàm số.
  • Khảo sát hàm số bằng đạo hàm.
  • Ứng dụng đạo hàm để giải các bài toán thực tế.

Lời giải chi tiết bài 11 trang 12

Để giải bài 11 trang 12, chúng ta cần thực hiện các bước sau:

  1. Xác định hàm số cần khảo sát.
  2. Tính đạo hàm cấp một của hàm số.
  3. Tìm các điểm cực trị của hàm số bằng cách giải phương trình đạo hàm bằng 0.
  4. Tính đạo hàm cấp hai của hàm số.
  5. Xác định khoảng đồng biến, nghịch biến của hàm số.
  6. Tìm các điểm uốn của hàm số.
  7. Vẽ đồ thị hàm số.

Ví dụ minh họa

Giả sử bài tập yêu cầu tính đạo hàm của hàm số f(x) = x3 - 3x2 + 2x tại x = 1.

Ta có:

f'(x) = 3x2 - 6x + 2

f'(1) = 3(1)2 - 6(1) + 2 = -1

Vậy, đạo hàm của hàm số f(x) tại x = 1 là -1.

Mẹo giải bài tập

  • Nắm vững các công thức đạo hàm cơ bản.
  • Sử dụng quy tắc tính đạo hàm một cách linh hoạt.
  • Kiểm tra lại kết quả sau khi giải xong.
  • Luyện tập thường xuyên để nâng cao kỹ năng.

Tài liệu tham khảo

Để học tập và ôn luyện kiến thức về đạo hàm, bạn có thể tham khảo các tài liệu sau:

  • Sách giáo khoa Toán 12.
  • Sách bài tập Toán 12.
  • Các trang web học toán online uy tín.
  • Các video bài giảng về đạo hàm.

Kết luận

Bài 11 trang 12 sách bài tập Toán 12 Cánh Diều là một bài tập quan trọng giúp bạn củng cố kiến thức về đạo hàm. Hy vọng rằng với lời giải chi tiết và các mẹo giải bài tập được cung cấp trong bài viết này, bạn sẽ tự tin hơn trong quá trình học tập và đạt được kết quả tốt nhất.

Bảng tổng hợp công thức đạo hàm cơ bản

Hàm sốĐạo hàm
f(x) = c (hằng số)f'(x) = 0
f(x) = xnf'(x) = nxn-1
f(x) = sin(x)f'(x) = cos(x)
f(x) = cos(x)f'(x) = -sin(x)

Tài liệu, đề thi và đáp án Toán 12