Logo Header
  1. Môn Toán
  2. Giải bài 17 trang 13 sách bài tập toán 12 - Cánh diều

Giải bài 17 trang 13 sách bài tập toán 12 - Cánh diều

Giải bài 17 trang 13 Sách bài tập Toán 12 - Cánh Diều

Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 12. Bài viết này sẽ hướng dẫn bạn cách giải bài 17 trang 13 trong sách bài tập Toán 12 - Cánh Diều, giúp bạn nắm vững kiến thức và tự tin hơn trong quá trình học tập.

Chúng tôi luôn cố gắng cung cấp những giải pháp tối ưu, giúp bạn tiết kiệm thời gian và đạt kết quả tốt nhất.

Trong mỗi ý a), b), c), d), chọn phương án đúng (Đ) hoặc sai (S). Cho hàm số (y = {x^3} - 3{rm{x}} + 2). a) (y' = 3{{rm{x}}^2} - 3). b) (y' = 0) khi (x = - 1,x = 1). c) (y' > 0) khi (x in left( { - 1;1} right)) và (y' < 0) khi (x in left( { - infty ; - 1} right) cup left( {1; + infty } right)). d) Giá trị cực đại của hàm số là ${{f}_{CĐ}}=0$.

Đề bài

Trong mỗi ý a), b), c), d), chọn phương án đúng (Đ) hoặc sai (S).

Cho hàm số \(y = {x^3} - 3{\rm{x}} + 2\).a) \(y' = 3{{\rm{x}}^2} - 3\).b) \(y' = 0\) khi \(x = - 1,x = 1\).c) \(y' > 0\) khi \(x \in \left( { - 1;1} \right)\) và \(y' < 0\) khi \(x \in \left( { - \infty ; - 1} \right) \cup \left( {1; + \infty } \right)\).d) Giá trị cực đại của hàm số là ${{f}_{C}}=0$.

Phương pháp giải - Xem chi tiếtGiải bài 17 trang 13 sách bài tập toán 12 - Cánh diều 1

Lập bảng biến thiên của hàm số \(y = f\left( x \right)\), từ đó xác định các khoảng đơn điệu, cực trị của hàm số \(y = f\left( x \right)\).

Lời giải chi tiết

Hàm số có tập xác định là \(\mathbb{R}\).

Ta có:

\(y' = 3{{\rm{x}}^2} - 3\). Vậy a) đúng.

\(y' = 0\) khi \(x = - 1,x = 1\). Vậy b) đúng.

Bảng biến thiên của hàm số:

Giải bài 17 trang 13 sách bài tập toán 12 - Cánh diều 2

Vậy hàm số đồng biến trên mỗi khoảng \(\left( { - \infty ; - 1} \right)\) và \(\left( {1; + \infty } \right)\); nghịch biến trên khoảng \(\left( { - 1;1} \right)\). Vậy c) sai.

Hàm số đạt cực đại tại \(x = - 1\). Khi đó giá trị cực đại ${{f}_{CĐ}}=4$. Vậy d) sai.

a) Đ. b) Đ. c) S. d) S.

Tự tin bứt phá Kỳ thi THPT Quốc gia môn Toán! Đừng bỏ lỡ Giải bài 17 trang 13 sách bài tập toán 12 - Cánh diều đặc sắc thuộc chuyên mục đề thi toán 12 trên nền tảng toán. Với bộ bài tập lý thuyết toán thpt được biên soạn chuyên sâu, bám sát cấu trúc đề thi và chương trình Toán 12, đây chính là "chiến lược vàng" giúp các em tối ưu hóa ôn luyện. Học sinh sẽ không chỉ làm chủ mọi dạng bài thi mà còn nắm vững chiến thuật làm bài hiệu quả, sẵn sàng tự tin chinh phục điểm cao, vững bước vào đại học mơ ước nhờ phương pháp học trực quan, khoa học và hiệu quả học tập vượt trội!

Giải bài 17 trang 13 Sách bài tập Toán 12 - Cánh Diều: Tổng quan

Bài 17 trang 13 Sách bài tập Toán 12 - Cánh Diều thuộc chương trình học về đạo hàm. Bài tập này thường tập trung vào việc vận dụng các quy tắc tính đạo hàm của hàm số, đặc biệt là đạo hàm của hàm hợp và đạo hàm của hàm lượng giác. Việc nắm vững kiến thức về đạo hàm là nền tảng quan trọng để giải quyết các bài toán liên quan đến cực trị, điểm uốn và ứng dụng của đạo hàm trong các lĩnh vực khác.

Nội dung bài tập

Bài 17 thường bao gồm các dạng bài tập sau:

  • Tính đạo hàm của hàm số cho trước.
  • Tìm đạo hàm cấp hai của hàm số.
  • Xác định khoảng đơn điệu của hàm số dựa vào dấu của đạo hàm.
  • Tìm cực trị của hàm số.

Phương pháp giải bài tập

Để giải bài 17 trang 13 Sách bài tập Toán 12 - Cánh Diều hiệu quả, bạn cần:

  1. Nắm vững các quy tắc tính đạo hàm: Đạo hàm của hàm số cơ bản (hàm số lũy thừa, hàm số lượng giác, hàm số mũ, hàm số logarit), quy tắc đạo hàm của tổng, hiệu, tích, thương và hàm hợp.
  2. Phân tích cấu trúc hàm số: Xác định hàm số chính và hàm số bên trong (nếu có) để áp dụng quy tắc đạo hàm hàm hợp.
  3. Thực hiện tính toán cẩn thận: Tránh sai sót trong quá trình tính toán đạo hàm.
  4. Kiểm tra lại kết quả: Đảm bảo kết quả đạo hàm phù hợp với kiến thức đã học.

Ví dụ minh họa

Ví dụ 1: Tính đạo hàm của hàm số y = sin(2x + 1).

Giải:

Sử dụng quy tắc đạo hàm hàm hợp, ta có:

y' = cos(2x + 1) * (2x + 1)' = 2cos(2x + 1)

Ví dụ 2: Tìm đạo hàm cấp hai của hàm số y = x3 - 2x2 + 5x - 1.

Giải:

Đạo hàm cấp một: y' = 3x2 - 4x + 5

Đạo hàm cấp hai: y'' = 6x - 4

Lưu ý quan trọng

  • Luôn viết rõ các bước giải để dễ dàng kiểm tra và sửa lỗi.
  • Sử dụng máy tính cầm tay để kiểm tra kết quả đạo hàm (nếu cần thiết).
  • Tham khảo các tài liệu học tập và bài giảng để hiểu rõ hơn về các quy tắc tính đạo hàm.

Bài tập luyện tập

Để củng cố kiến thức, bạn có thể tự giải các bài tập sau:

  • Tính đạo hàm của hàm số y = cos(x2).
  • Tìm đạo hàm cấp hai của hàm số y = ex + ln(x).
  • Xác định khoảng đơn điệu của hàm số y = x3 - 3x + 2.

Kết luận

Bài 17 trang 13 Sách bài tập Toán 12 - Cánh Diều là một bài tập quan trọng giúp bạn rèn luyện kỹ năng tính đạo hàm và vận dụng các kiến thức đã học. Hy vọng với hướng dẫn chi tiết và các ví dụ minh họa trên, bạn sẽ tự tin hơn trong việc giải quyết bài tập này và đạt kết quả tốt trong môn Toán 12.

Quy tắcCông thức
Đạo hàm của hàm số lũy thừa(xn)' = nxn-1
Đạo hàm của hàm số lượng giác(sin x)' = cos x, (cos x)' = -sin x
Đạo hàm của hàm hợp(f(g(x)))' = f'(g(x)) * g'(x)

Tài liệu, đề thi và đáp án Toán 12