Giaitoan.edu.vn xin giới thiệu lời giải chi tiết bài 32 trang 59 Sách bài tập Toán 12 - Cánh Diều. Bài viết này cung cấp đáp án đầy đủ, phương pháp giải rõ ràng, giúp học sinh nắm vững kiến thức và rèn luyện kỹ năng giải toán.
Chúng tôi luôn cố gắng cung cấp nội dung chính xác, dễ hiểu và cập nhật mới nhất để hỗ trợ tối đa cho quá trình học tập của bạn.
Trong mỗi ý a), b), c), d), chọn phương án: đúng (Đ) hoặc sai (S). Cho hai mặt phẳng (left( {{P_1}} right):2x - 3y - 6z + 7 = 0,left( {{P_2}} right):2x + 2y + z + 8 = 0). Gọi (alpha ) là góc giữa hai mặt phẳng (left( {{P_1}} right)) và (left( {{P_2}} right)). a) Vectơ (overrightarrow n = left( {2; - 3; - 6} right)) là một vectơ pháp tuyến của mặt phẳng (left( {{P_1}} right)). b) Vectơ có toạ độ (left( {2; - 2;1} right)) là một vectơ pháp tuyến của mặt phẳng (
Đề bài
Trong mỗi ý a), b), c), d), chọn phương án: đúng (Đ) hoặc sai (S).
Cho hai mặt phẳng \(\left( {{P_1}} \right):2x - 3y - 6z + 7 = 0,\left( {{P_2}} \right):2x + 2y + z + 8 = 0\). Gọi \(\alpha \) là góc giữa hai mặt phẳng \(\left( {{P_1}} \right)\) và \(\left( {{P_2}} \right)\).
a) Vectơ \(\overrightarrow n = \left( {2; - 3; - 6} \right)\) là một vectơ pháp tuyến của mặt phẳng \(\left( {{P_1}} \right)\).
b) Vectơ có toạ độ \(\left( {2; - 2;1} \right)\) là một vectơ pháp tuyến của mặt phẳng \(\left( {{P_2}} \right)\).
c) \(\cos \alpha = \frac{{\left| {\overrightarrow {{n_1}} .\overrightarrow {{n_2}} } \right|}}{{\left| {\overrightarrow {{n_1}} } \right|.\left| {\overrightarrow {{n_2}} } \right|}}\) với \(\overrightarrow {{n_1}} ,\overrightarrow {{n_2}} \) lần lượt là vectơ pháp tuyến của mặt phẳng \(\left( {{P_1}} \right),\left( {{P_2}} \right)\).
d) \(\alpha \approx {69^ \circ }\) (làm tròn đến hàng đơn vị của độ).
Phương pháp giải - Xem chi tiết
Hai mặt phẳng \(\left( {{P_1}} \right)\) và \(\left( {{P_2}} \right)\) có vectơ pháp tuyến lần lượt là \(\overrightarrow {{n_1}} = \left( {{A_1};{B_1};{C_1}} \right),\)\(\overrightarrow {{n_2}} = \left( {{A_2};{B_2};{C_2}} \right)\). Khi đó ta có:
\(\cos \left( {\left( {{P_1}} \right),\left( {{P_2}} \right)} \right) = \frac{{\left| {{A_1}{A_2} + {B_1}{B_2} + {C_1}{C_2}} \right|}}{{\sqrt {A_1^2 + B_1^2 + C_1^2} .\sqrt {A_2^2 + B_2^2 + C_2^2} }}\).
Lời giải chi tiết
Mặt phẳng \(\left( {{P_1}} \right):2x - 3y - 6z + 7 = 0\) có vectơ pháp tuyến \(\overrightarrow n = \left( {2; - 3; - 6} \right)\). Vậy a) đúng.
Mặt phẳng \(\left( {{P_2}} \right):2x + 2y + z + 8 = 0\) có vectơ pháp tuyến \(\overrightarrow {n'} = \left( {2;2;1} \right)\). Vậy b) sai.
Ta có: \(\cos \alpha = \cos \left( {\left( {{P_1}} \right),\left( {{P_2}} \right)} \right) = \frac{{\left| {\overrightarrow {{n_1}} .\overrightarrow {{n_2}} } \right|}}{{\left| {\overrightarrow {{n_1}} } \right|.\left| {\overrightarrow {{n_2}} } \right|}}\). Vậy c) đúng.
\(\cos \alpha = \cos \left( {\left( {{P_1}} \right),\left( {{P_2}} \right)} \right) = \frac{{\left| {2.2 + \left( { - 3} \right).2 + \left( { - 6} \right).1} \right|}}{{\sqrt {{2^2} + {{\left( { - 3} \right)}^2} + {{\left( { - 6} \right)}^2}} .\sqrt {{2^2} + {2^2} + {1^2}} }} = \frac{8}{{21}}\).
Suy ra \(\alpha \approx {68^ \circ }\). Vậy d) sai.
a) Đ.
b) S.
c) Đ.
d) S.
Bài 32 trang 59 Sách bài tập Toán 12 - Cánh Diều thuộc chương trình học Toán 12, tập trung vào việc ôn tập và củng cố kiến thức về các chủ đề đã học. Bài tập này thường yêu cầu học sinh vận dụng các công thức, định lý và kỹ năng giải toán đã được trang bị để giải quyết các bài toán thực tế.
Bài 32 trang 59 Sách bài tập Toán 12 - Cánh Diều thường bao gồm các dạng bài tập sau:
Để giải bài 32 trang 59 Sách bài tập Toán 12 - Cánh Diều một cách hiệu quả, học sinh cần:
Bài toán: Giải phương trình: 2x2 - 5x + 3 = 0
Giải:
Phương trình 2x2 - 5x + 3 = 0 là một phương trình bậc hai. Ta có:
Tính delta: Δ = b2 - 4ac = (-5)2 - 4 * 2 * 3 = 25 - 24 = 1
Vì Δ > 0, phương trình có hai nghiệm phân biệt:
Vậy, phương trình có hai nghiệm là x1 = 3/2 và x2 = 1.
Trong quá trình giải bài tập, học sinh cần lưu ý:
Học sinh có thể tham khảo các tài liệu sau để học tập và ôn luyện:
Bài 32 trang 59 Sách bài tập Toán 12 - Cánh Diều là một bài tập quan trọng giúp học sinh củng cố kiến thức và rèn luyện kỹ năng giải toán. Hy vọng với hướng dẫn chi tiết và ví dụ minh họa trên, học sinh có thể giải bài tập này một cách hiệu quả và đạt kết quả tốt nhất.