Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho bài tập Toán 12. Bài viết này sẽ hướng dẫn bạn giải bài 25 trang 57 Sách bài tập Toán 12 - Cánh Diều một cách nhanh chóng và hiệu quả.
Chúng tôi hiểu rằng việc giải toán đôi khi có thể gặp khó khăn, đặc biệt là với những bài tập phức tạp. Vì vậy, chúng tôi đã biên soạn lời giải chi tiết, kèm theo các bước giải rõ ràng, giúp bạn nắm vững kiến thức và kỹ năng giải toán.
Đường thẳng (Delta ) có phương trình chính tắc là: (frac{{x + 1}}{{ - 7}} = frac{{y + 3}}{{ - 8}} = frac{{z - 2}}{1}). Phương trình tham số của (Delta ) là: A. (left{ begin{array}{l}x = 1 - 7t\y = 3 - 8t\z = - 2 + tend{array} right.). B. (left{ begin{array}{l}x = - 1 + 7t\y = - 3 + 8t\z = 2 + tend{array} right.). C. (left{ begin{array}{l}x = - 1 - 7t\y = 3 - 8t\z = 2 + tend{array} right.). D. (left{ begin{array}{l}x = - 1 - 7t\y = - 3 - 8t\z =
Đề bài
Đường thẳng \(\Delta \) có phương trình chính tắc là: \(\frac{{x + 1}}{{ - 7}} = \frac{{y + 3}}{{ - 8}} = \frac{{z - 2}}{1}\). Phương trình tham số của \(\Delta \) là:
A. \(\left\{ \begin{array}{l}x = 1 - 7t\\y = 3 - 8t\\z = - 2 + t\end{array} \right.\).
B. \(\left\{ \begin{array}{l}x = - 1 + 7t\\y = - 3 + 8t\\z = 2 + t\end{array} \right.\).
C. \(\left\{ \begin{array}{l}x = - 1 - 7t\\y = 3 - 8t\\z = 2 + t\end{array} \right.\).
D. \(\left\{ \begin{array}{l}x = - 1 - 7t\\y = - 3 - 8t\\z = 2 + t\end{array} \right.\).
Phương pháp giải - Xem chi tiết
Phương trình tham số của đường thẳng \(\Delta \) đi qua \({M_0}\left( {{x_0};{y_0};{z_0}} \right)\) và có vectơ chỉ phương \(\overrightarrow u = \left( {a;b;c} \right)\) là: \(\left\{ \begin{array}{l}x = {x_0} + at\\y = {y_0} + bt\\z = {z_0} + ct\end{array} \right.\).
Lời giải chi tiết
Đường thẳng \(\Delta \) có phương trình chính tắc là: \(\frac{{x + 1}}{{ - 7}} = \frac{{y + 3}}{{ - 8}} = \frac{{z - 2}}{1}\) đi qua điểm \(M\left( { - 1; - 3;2} \right)\) và có vectơ chỉ phương \(\overrightarrow u = \left( { - 7; - 8;1} \right)\). Phương trình tham số của \(\Delta \) là: \(\left\{ \begin{array}{l}x = - 1 - 7t\\y = - 3 - 8t\\z = 2 + t\end{array} \right.\).
Chọn D.
Bài 25 trang 57 Sách bài tập Toán 12 - Cánh Diều thuộc chương trình học Toán 12, tập trung vào việc ôn tập các kiến thức về đạo hàm và ứng dụng của đạo hàm trong việc khảo sát hàm số. Bài tập này thường yêu cầu học sinh vận dụng các công thức đạo hàm, quy tắc tính đạo hàm và các phương pháp giải phương trình, bất phương trình để tìm ra đáp án chính xác.
Trước khi bắt đầu giải bài tập, điều quan trọng là phải đọc kỹ đề bài và xác định rõ yêu cầu của bài toán. Trong bài 25 trang 57, học sinh cần xác định rõ hàm số cần khảo sát, các điểm đặc biệt của hàm số (điểm cực trị, điểm uốn) và các khoảng đơn điệu, khoảng lồi, khoảng lõm của hàm số.
Giả sử hàm số cần khảo sát là y = x3 - 3x2 + 2.
Dựa vào các kết quả này, ta có thể khảo sát sự biến thiên của hàm số và vẽ đồ thị hàm số.
Đạo hàm có rất nhiều ứng dụng trong thực tế, chẳng hạn như:
Bài 25 trang 57 Sách bài tập Toán 12 - Cánh Diều là một bài tập quan trọng giúp học sinh ôn tập và củng cố kiến thức về đạo hàm và ứng dụng của đạo hàm. Hy vọng rằng với hướng dẫn chi tiết này, bạn sẽ giải bài tập một cách dễ dàng và hiệu quả. Chúc bạn học tốt!