Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho bài 20 trang 96 sách bài tập Toán 12 chương trình Cánh Diều. Bài viết này sẽ giúp bạn nắm vững kiến thức và kỹ năng giải toán, tự tin hơn trong các kỳ thi.
Chúng tôi hiểu rằng việc giải các bài tập Toán 12 có thể gặp nhiều khó khăn. Vì vậy, đội ngũ giáo viên giàu kinh nghiệm của giaitoan.edu.vn đã biên soạn lời giải chi tiết, kèm theo các bước giải rõ ràng, giúp bạn dễ dàng theo dõi và hiểu bài.
Trong mỗi ý a), b), c), d), chọn phương án: đúng (Đ) hoặc sai (S). Cho các biến cố (A,B) thoả mãn (0 < Pleft( A right) < 1,0 < Pleft( B right) < 1). a) (Pleft( B right) = Pleft( A right).Pleft( {B|A} right) + Pleft( {overline A } right).Pleft( {B|overline A } right)). b) (Pleft( {A|B} right) = frac{{Pleft( {A cap B} right)}}{{Pleft( B right)}}). c) (Pleft( {A|B} right) = frac{{Pleft( B right).Pleft( {B|A} right)}}{{Pleft( A right)}}). d) (Plef
Đề bài
Trong mỗi ý a), b), c), d), chọn phương án: đúng (Đ) hoặc sai (S).
Cho các biến cố \(A,B\) thoả mãn \(0 < P\left( A \right) < 1,0 < P\left( B \right) < 1\).
a) \(P\left( B \right) = P\left( A \right).P\left( {B|A} \right) + P\left( {\overline A } \right).P\left( {B|\overline A } \right)\).
b) \(P\left( {A|B} \right) = \frac{{P\left( {A \cap B} \right)}}{{P\left( B \right)}}\).
c) \(P\left( {A|B} \right) = \frac{{P\left( B \right).P\left( {B|A} \right)}}{{P\left( A \right)}}\).
d) \(P\left( A \right) = P\left( {A|B} \right)\).
Phương pháp giải - Xem chi tiết
‒ Sử dụng công thức tính xác suất toàn phần: \(P\left( A \right) = P\left( B \right).P\left( {A|B} \right) + P\left( {\overline B } \right).P\left( {A|\overline B } \right)\).
‒ Sử dụng công thức tính xác suất của \(A\) với điều kiện \(B\): \(P\left( {A|B} \right) = \frac{{P\left( {A \cap B} \right)}}{{P\left( B \right)}}\).
‒ Sử dụng công thức Bayes: \(P\left( {B|A} \right) = \frac{{P\left( B \right).P\left( {A|B} \right)}}{{P\left( A \right)}}\).
Lời giải chi tiết
Theo công thức tính xác suất toàn phần ta có: \(P\left( B \right) = P\left( A \right).P\left( {B|A} \right) + P\left( {\overline A } \right).P\left( {B|\overline A } \right)\). Vậy a) đúng.
Theo công thức tính xác suất của \(A\) với điều kiện \(B\) ta có: \(P\left( {A|B} \right) = \frac{{P\left( {A \cap B} \right)}}{{P\left( B \right)}}\). Vậy b) đúng.
Theo công thức Bayes: \(P\left( {A|B} \right) = \frac{{P\left( A \right).P\left( {B|A} \right)}}{{P\left( B \right)}}\). Vậy c) sai.
Theo công thức tính xác suất toàn phần ta có: \(P\left( A \right) = P\left( B \right).P\left( {A|B} \right) + P\left( {\overline B } \right).P\left( {A|\overline B } \right)\). Vậy d) sai.
a) Đ.
b) Đ.
c) S.
d) S.
Bài 20 trang 96 sách bài tập Toán 12 Cánh Diều thuộc chương trình học về đạo hàm. Bài tập này thường tập trung vào việc vận dụng các quy tắc tính đạo hàm của các hàm số cơ bản, cũng như các hàm hợp. Để giải bài tập này một cách hiệu quả, bạn cần nắm vững các kiến thức sau:
Phân tích bài toán: Trước khi bắt đầu giải bài tập, hãy đọc kỹ đề bài và xác định rõ yêu cầu của bài toán. Xác định hàm số cần tìm đạo hàm và các điểm cần tính đạo hàm tại đó.
Giả sử bài 20 yêu cầu tính đạo hàm của hàm số f(x) = 2x3 + sin(x) tại x = 0. Ta thực hiện như sau:
Vậy, đạo hàm của hàm số f(x) tại x = 0 là 1.
Bài tập về đạo hàm thường xuất hiện dưới các dạng sau:
Để giải bài tập đạo hàm một cách hiệu quả, bạn có thể áp dụng một số mẹo sau:
Khi giải bài tập đạo hàm, bạn cần chú ý đến các điểm sau:
Hy vọng với hướng dẫn chi tiết này, bạn sẽ tự tin hơn khi giải bài 20 trang 96 sách bài tập Toán 12 Cánh Diều. Chúc bạn học tập tốt!