Logo Header
  1. Môn Toán
  2. Giải bài 16 trang 67 sách bài tập toán 12 - Cánh diều

Giải bài 16 trang 67 sách bài tập toán 12 - Cánh diều

Giải bài 16 trang 67 Sách bài tập Toán 12 - Cánh Diều

Giaitoan.edu.vn xin giới thiệu lời giải chi tiết bài 16 trang 67 Sách bài tập Toán 12 Cánh Diều. Bài viết này sẽ cung cấp đáp án chính xác, phương pháp giải rõ ràng, giúp các em học sinh hiểu sâu kiến thức và tự tin làm bài tập.

Chúng tôi luôn cố gắng cung cấp nội dung chất lượng, dễ hiểu, phù hợp với chương trình học Toán 12 hiện hành. Hãy cùng theo dõi và luyện tập để đạt kết quả tốt nhất!

Trong mỗi ý a), b), c), d), chọn phương án đúng (Đ) hoặc sai (S). Trong không gian với hệ toạ độ (Oxyz), cho hình bình hành (ABCD) có ba đỉnh (Aleft( {1;2;3} right),)(Bleft( {5;0; - 1} right)) và (Cleft( {4;3;6} right)). a) Toạ độ của vectơ (overrightarrow {AB} ) là (left( {4; - 2; - 4} right)). b) Gọi toạ độ của điểm (D) là (left( {{x_D};{y_D};{z_D}} right)), ta có toạ độ của vectơ (overrightarrow {CD} ) là (left( {{x_D} - 4;{y_D} - 3;{z_D} - 6} right)).

Đề bài

Trong mỗi ý a), b), c), d), chọn phương án đúng (Đ) hoặc sai (S).Trong không gian với hệ toạ độ \(Oxyz\), cho hình bình hành \(ABCD\) có ba đỉnh \(A\left( {1;2;3} \right),\)\(B\left( {5;0; - 1} \right)\) và \(C\left( {4;3;6} \right)\). a) Toạ độ của vectơ \(\overrightarrow {AB} \) là \(\left( {4; - 2; - 4} \right)\). b) Gọi toạ độ của điểm \(D\) là \(\left( {{x_D};{y_D};{z_D}} \right)\), ta có toạ độ của vectơ \(\overrightarrow {CD} \) là \(\left( {{x_D} - 4;{y_D} - 3;{z_D} - 6} \right)\). c) Tứ giác \(ABCD\) là hình bình hành khi và chỉ khi \(\overrightarrow {AB} = \overrightarrow {CD} \). d) Toạ độ của điểm \(D\) là \(\left( {8;1;2} \right)\).

Phương pháp giải - Xem chi tiếtGiải bài 16 trang 67 sách bài tập toán 12 - Cánh diều 1

‒ Sử dụng toạ độ của vectơ \(\overrightarrow {AB} = \left( {{x_B} - {x_A};{y_B} - {y_A};{z_B} - {z_A}} \right)\).

‒ Sử dụng tính chất hai vectơ bằng nhau: Với \(\overrightarrow u = \left( {{x_1};{y_1};{z_1}} \right)\) và \(\overrightarrow v = \left( {{x_2};{y_2};{z_2}} \right)\), ta có: \(\overrightarrow u = \overrightarrow v \Leftrightarrow \left\{ \begin{array}{l}{x_1} = {x_2}\\{y_1} = {y_2}\\{z_1} = {z_2}\end{array} \right.\).

Lời giải chi tiết

Giải bài 16 trang 67 sách bài tập toán 12 - Cánh diều 2

\(\overrightarrow {AB} = \left( {5 - 1;0 - 2;\left( { - 1} \right) - 3} \right) = \left( {4; - 2; - 4} \right)\). Vậy a) đúng.

\(\overrightarrow {CD} = \left( {{x_D} - 4;{y_D} - 3;{z_D} - 6} \right)\). Vậy b) đúng.

Tứ giác \(ABCD\) là hình bình hành khi và chỉ khi \(\overrightarrow {BA} = \overrightarrow {CD} \). Vậy c) sai.

\(\overrightarrow {BA} = \left( { - 4;2;4} \right)\).

\(\overrightarrow {BA} = \overrightarrow {CD} \Leftrightarrow \left\{ \begin{array}{l} - 4 = {x_D} - 4\\2 = {y_D} - 3\\4 = {z_D} - 6\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x_D} = 0\\{y_D} = 5\\{z_D} = 10\end{array} \right.\). Vậy \(D\left( {0;5;10} \right)\). Vậy d) sai.

a) Đ

b) Đ

c) S

d) S

Tự tin bứt phá Kỳ thi THPT Quốc gia môn Toán! Đừng bỏ lỡ Giải bài 16 trang 67 sách bài tập toán 12 - Cánh diều đặc sắc thuộc chuyên mục sgk toán 12 trên nền tảng đề thi toán. Với bộ bài tập toán thpt được biên soạn chuyên sâu, bám sát cấu trúc đề thi và chương trình Toán 12, đây chính là "chiến lược vàng" giúp các em tối ưu hóa ôn luyện. Học sinh sẽ không chỉ làm chủ mọi dạng bài thi mà còn nắm vững chiến thuật làm bài hiệu quả, sẵn sàng tự tin chinh phục điểm cao, vững bước vào đại học mơ ước nhờ phương pháp học trực quan, khoa học và hiệu quả học tập vượt trội!

Giải bài 16 trang 67 Sách bài tập Toán 12 - Cánh Diều: Tổng quan

Bài 16 trang 67 Sách bài tập Toán 12 Cánh Diều thuộc chương trình học về Đạo hàm. Bài tập này tập trung vào việc vận dụng các kiến thức về đạo hàm của hàm số để giải quyết các bài toán thực tế, đặc biệt là các bài toán liên quan đến tính đơn điệu của hàm số và tìm cực trị.

Nội dung chi tiết bài 16 trang 67

Bài 16 bao gồm các câu hỏi và bài tập khác nhau, yêu cầu học sinh:

  • Tính đạo hàm của hàm số.
  • Xác định khoảng đơn điệu của hàm số.
  • Tìm cực đại, cực tiểu của hàm số.
  • Giải các bài toán ứng dụng liên quan đến đạo hàm.

Lời giải chi tiết từng bài tập

Bài 16.1

Đề bài: Tính đạo hàm của hàm số f(x) = x3 - 3x2 + 2x - 1.

Lời giải:

f'(x) = 3x2 - 6x + 2

Bài 16.2

Đề bài: Xác định khoảng đơn điệu của hàm số f(x) = x2 - 4x + 3.

Lời giải:

f'(x) = 2x - 4

f'(x) = 0 ⇔ x = 2

Khoảng nghịch biến: (-∞; 2)

Khoảng đồng biến: (2; +∞)

Bài 16.3

Đề bài: Tìm cực đại, cực tiểu của hàm số f(x) = x3 - 3x.

Lời giải:

f'(x) = 3x2 - 3

f'(x) = 0 ⇔ x = ±1

f''(x) = 6x

f''(1) = 6 > 0 ⇒ x = 1 là điểm cực tiểu, f(1) = -2

f''(-1) = -6 < 0 ⇒ x = -1 là điểm cực đại, f(-1) = 2

Phương pháp giải bài tập về đạo hàm

Để giải tốt các bài tập về đạo hàm, học sinh cần nắm vững các kiến thức sau:

  • Các công thức tính đạo hàm cơ bản.
  • Quy tắc tính đạo hàm của hàm hợp.
  • Mối quan hệ giữa đạo hàm và tính đơn điệu của hàm số.
  • Điều kiện cực đại, cực tiểu của hàm số.

Lưu ý khi giải bài tập

Khi giải bài tập về đạo hàm, học sinh cần chú ý:

  • Kiểm tra kỹ điều kiện xác định của hàm số.
  • Tính đạo hàm chính xác.
  • Phân tích dấu của đạo hàm để xác định khoảng đơn điệu.
  • Sử dụng đạo hàm cấp hai để xác định cực đại, cực tiểu.

Tổng kết

Bài 16 trang 67 Sách bài tập Toán 12 Cánh Diều là một bài tập quan trọng giúp học sinh củng cố kiến thức về đạo hàm. Hy vọng với lời giải chi tiết và phương pháp giải rõ ràng trên đây, các em học sinh sẽ tự tin hơn khi làm bài tập và đạt kết quả tốt trong môn Toán 12.

Bảng tổng hợp các công thức đạo hàm cơ bản

Hàm số y = f(x)Đạo hàm y' = f'(x)
C (hằng số)0
xnnxn-1
sin xcos x
cos x-sin x
tan x1/cos2x

Tài liệu, đề thi và đáp án Toán 12