Giaitoan.edu.vn xin giới thiệu lời giải chi tiết bài 16 trang 67 Sách bài tập Toán 12 Cánh Diều. Bài viết này sẽ cung cấp đáp án chính xác, phương pháp giải rõ ràng, giúp các em học sinh hiểu sâu kiến thức và tự tin làm bài tập.
Chúng tôi luôn cố gắng cung cấp nội dung chất lượng, dễ hiểu, phù hợp với chương trình học Toán 12 hiện hành. Hãy cùng theo dõi và luyện tập để đạt kết quả tốt nhất!
Trong mỗi ý a), b), c), d), chọn phương án đúng (Đ) hoặc sai (S). Trong không gian với hệ toạ độ (Oxyz), cho hình bình hành (ABCD) có ba đỉnh (Aleft( {1;2;3} right),)(Bleft( {5;0; - 1} right)) và (Cleft( {4;3;6} right)). a) Toạ độ của vectơ (overrightarrow {AB} ) là (left( {4; - 2; - 4} right)). b) Gọi toạ độ của điểm (D) là (left( {{x_D};{y_D};{z_D}} right)), ta có toạ độ của vectơ (overrightarrow {CD} ) là (left( {{x_D} - 4;{y_D} - 3;{z_D} - 6} right)).
Đề bài
Trong mỗi ý a), b), c), d), chọn phương án đúng (Đ) hoặc sai (S).Trong không gian với hệ toạ độ \(Oxyz\), cho hình bình hành \(ABCD\) có ba đỉnh \(A\left( {1;2;3} \right),\)\(B\left( {5;0; - 1} \right)\) và \(C\left( {4;3;6} \right)\). a) Toạ độ của vectơ \(\overrightarrow {AB} \) là \(\left( {4; - 2; - 4} \right)\). b) Gọi toạ độ của điểm \(D\) là \(\left( {{x_D};{y_D};{z_D}} \right)\), ta có toạ độ của vectơ \(\overrightarrow {CD} \) là \(\left( {{x_D} - 4;{y_D} - 3;{z_D} - 6} \right)\). c) Tứ giác \(ABCD\) là hình bình hành khi và chỉ khi \(\overrightarrow {AB} = \overrightarrow {CD} \). d) Toạ độ của điểm \(D\) là \(\left( {8;1;2} \right)\).
Phương pháp giải - Xem chi tiết
‒ Sử dụng toạ độ của vectơ \(\overrightarrow {AB} = \left( {{x_B} - {x_A};{y_B} - {y_A};{z_B} - {z_A}} \right)\).
‒ Sử dụng tính chất hai vectơ bằng nhau: Với \(\overrightarrow u = \left( {{x_1};{y_1};{z_1}} \right)\) và \(\overrightarrow v = \left( {{x_2};{y_2};{z_2}} \right)\), ta có: \(\overrightarrow u = \overrightarrow v \Leftrightarrow \left\{ \begin{array}{l}{x_1} = {x_2}\\{y_1} = {y_2}\\{z_1} = {z_2}\end{array} \right.\).
Lời giải chi tiết
\(\overrightarrow {AB} = \left( {5 - 1;0 - 2;\left( { - 1} \right) - 3} \right) = \left( {4; - 2; - 4} \right)\). Vậy a) đúng.
\(\overrightarrow {CD} = \left( {{x_D} - 4;{y_D} - 3;{z_D} - 6} \right)\). Vậy b) đúng.
Tứ giác \(ABCD\) là hình bình hành khi và chỉ khi \(\overrightarrow {BA} = \overrightarrow {CD} \). Vậy c) sai.
\(\overrightarrow {BA} = \left( { - 4;2;4} \right)\).
\(\overrightarrow {BA} = \overrightarrow {CD} \Leftrightarrow \left\{ \begin{array}{l} - 4 = {x_D} - 4\\2 = {y_D} - 3\\4 = {z_D} - 6\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x_D} = 0\\{y_D} = 5\\{z_D} = 10\end{array} \right.\). Vậy \(D\left( {0;5;10} \right)\). Vậy d) sai.
a) Đ
b) Đ
c) S
d) S
Bài 16 trang 67 Sách bài tập Toán 12 Cánh Diều thuộc chương trình học về Đạo hàm. Bài tập này tập trung vào việc vận dụng các kiến thức về đạo hàm của hàm số để giải quyết các bài toán thực tế, đặc biệt là các bài toán liên quan đến tính đơn điệu của hàm số và tìm cực trị.
Bài 16 bao gồm các câu hỏi và bài tập khác nhau, yêu cầu học sinh:
Đề bài: Tính đạo hàm của hàm số f(x) = x3 - 3x2 + 2x - 1.
Lời giải:
f'(x) = 3x2 - 6x + 2
Đề bài: Xác định khoảng đơn điệu của hàm số f(x) = x2 - 4x + 3.
Lời giải:
f'(x) = 2x - 4
f'(x) = 0 ⇔ x = 2
Khoảng nghịch biến: (-∞; 2)
Khoảng đồng biến: (2; +∞)
Đề bài: Tìm cực đại, cực tiểu của hàm số f(x) = x3 - 3x.
Lời giải:
f'(x) = 3x2 - 3
f'(x) = 0 ⇔ x = ±1
f''(x) = 6x
f''(1) = 6 > 0 ⇒ x = 1 là điểm cực tiểu, f(1) = -2
f''(-1) = -6 < 0 ⇒ x = -1 là điểm cực đại, f(-1) = 2
Để giải tốt các bài tập về đạo hàm, học sinh cần nắm vững các kiến thức sau:
Khi giải bài tập về đạo hàm, học sinh cần chú ý:
Bài 16 trang 67 Sách bài tập Toán 12 Cánh Diều là một bài tập quan trọng giúp học sinh củng cố kiến thức về đạo hàm. Hy vọng với lời giải chi tiết và phương pháp giải rõ ràng trên đây, các em học sinh sẽ tự tin hơn khi làm bài tập và đạt kết quả tốt trong môn Toán 12.
Hàm số y = f(x) | Đạo hàm y' = f'(x) |
---|---|
C (hằng số) | 0 |
xn | nxn-1 |
sin x | cos x |
cos x | -sin x |
tan x | 1/cos2x |