Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho bài tập Toán 12. Bài viết này sẽ hướng dẫn bạn giải bài 53 trang 23 Sách bài tập Toán 12 - Cánh Diều một cách nhanh chóng và hiệu quả.
Chúng tôi hiểu rằng việc giải toán đôi khi có thể gặp khó khăn, đặc biệt là với những bài tập phức tạp. Vì vậy, chúng tôi đã biên soạn lời giải chi tiết, kèm theo các bước giải rõ ràng, giúp bạn nắm vững kiến thức và kỹ năng giải toán.
Cho hàm số (y = fleft( x right)) xác định trên (mathbb{R}backslash left{ 1 right}), liên tục trên mỗi khoảng xác định và có bảng biến thiên như sau: Tiệm cận đứng của đồ thị hàm số là đường thẳng: A. (x = 1). B. (x = 2). C. (y = 1). D. (y = 2).
Đề bài
Cho hàm số \(y = f\left( x \right)\) xác định trên \(\mathbb{R}\backslash \left\{ 1 \right\}\), liên tục trên mỗi khoảng xác định và có bảng biến thiên như sau:
Tiệm cận đứng của đồ thị hàm số là đường thẳng:
A. \(x = 1\).
B. \(x = 2\).
C. \(y = 1\).
D. \(y = 2\).
Phương pháp giải - Xem chi tiết
‒ Tìm tiệm cận đứng: Tính \(\mathop {\lim }\limits_{x \to x_0^ - } f\left( x \right)\) hoặc \(\mathop {\lim }\limits_{x \to x_0^ + } f\left( x \right)\), nếu một trong các giới hạn sau thoả mãn:
\(\mathop {\lim }\limits_{x \to x_0^ - } f\left( x \right) = + \infty ;\mathop {\lim }\limits_{x \to x_0^ - } f\left( x \right) = - \infty ;\mathop {\lim }\limits_{x \to x_0^ + } f\left( x \right) = + \infty ;\mathop {\lim }\limits_{x \to x_0^ + } f\left( x \right) = - \infty \)
thì đường thẳng \(x = {x_0}\) là đường tiệm cận đứng.
Lời giải chi tiết
Dựa vào bảng biến thiên ta có: \(\mathop {\lim }\limits_{x \to {1^ - }} f\left( x \right) = - \infty \).
Vậy \(x = 1\) là tiệm cận đứng của đồ thị hàm số đã cho.
Chọn A.
Bài 53 trang 23 Sách bài tập Toán 12 - Cánh Diều thuộc chương trình học Toán 12, tập trung vào việc ôn tập và củng cố kiến thức về các chủ đề đã học. Bài tập này thường yêu cầu học sinh vận dụng các công thức, định lý và kỹ năng giải toán đã được trang bị để giải quyết các bài toán thực tế.
Bài 53 thường bao gồm các dạng bài tập sau:
Để giải bài 53 trang 23 Sách bài tập Toán 12 - Cánh Diều một cách hiệu quả, bạn cần:
Đề bài: Cho hàm số y = x3 - 3x2 + 2. Tìm đạo hàm y' của hàm số.
Giải:
Áp dụng công thức đạo hàm của hàm số lũy thừa, ta có:
y' = 3x2 - 6x
Để học Toán 12 hiệu quả, bạn cần:
Giaitoan.edu.vn là một trang web học toán online uy tín, cung cấp lời giải chi tiết, dễ hiểu cho các bài tập Toán 12. Chúng tôi cam kết mang đến cho bạn những trải nghiệm học tập tốt nhất.
Hàm số y | Đạo hàm y' |
---|---|
y = c (c là hằng số) | y' = 0 |
y = xn | y' = nxn-1 |
y = sinx | y' = cosx |
y = cosx | y' = -sinx |
Hy vọng bài viết này đã giúp bạn giải bài 53 trang 23 Sách bài tập Toán 12 - Cánh Diều một cách hiệu quả. Chúc bạn học tập tốt!