Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 12. Bài viết này sẽ hướng dẫn bạn giải bài 74 trang 36 Sách bài tập Toán 12 - Cánh Diều một cách nhanh chóng và hiệu quả.
Chúng tôi hiểu rằng việc giải toán đôi khi có thể gặp khó khăn, đặc biệt là với những bài tập phức tạp. Vì vậy, chúng tôi đã biên soạn lời giải chi tiết, kèm theo các bước giải rõ ràng, giúp bạn nắm vững kiến thức và kỹ năng giải toán.
Đường cong ở Hình 18 là đồ thị của hàm số: A. \(y = \frac{{{x^2} - 2{\rm{x}}}}{{x - 1}}\). B. \(y = \frac{{{x^2} + 2{\rm{x}}}}{{ - x + 1}}\). C. \(y = \frac{{ - {x^2} + 2{\rm{x}}}}{{2{\rm{x}} - 2}}\). D. \(y = \frac{{ - {x^2} + 2{\rm{x}}}}{{x - 1}}\).
Đề bài
Đường cong ở Hình 18 là đồ thị của hàm số:
A. \(y = \frac{{{x^2} - 2{\rm{x}}}}{{x - 1}}\).
B. \(y = \frac{{{x^2} + 2{\rm{x}}}}{{ - x + 1}}\).
C. \(y = \frac{{ - {x^2} + 2{\rm{x}}}}{{2{\rm{x}} - 2}}\).
D. \(y = \frac{{ - {x^2} + 2{\rm{x}}}}{{x - 1}}\).
Phương pháp giải - Xem chi tiết
‒ Xét giao điểm của đồ thị hàm số với các trục toạ độ.
‒ Xét các đường tiệm cận của đồ thị hàm số.
Lời giải chi tiết
Đồ thị hàm số đi qua điểm \(\left( {2;0} \right)\). Vậy loại C.
Đồ thị hàm số có tiệm cận xiên là đường thẳng đi qua hai điểm \(\left( {1;0} \right)\) và \(\left( {0;1} \right)\). Vậy \(y = - x + 1\) là tiệm cận xiên của đồ thị hàm số. Vậy loại A, B.
Chọn D.
Bài 74 trang 36 Sách bài tập Toán 12 - Cánh Diều thuộc chương trình học Toán 12, tập trung vào việc ôn tập và củng cố kiến thức về các chủ đề đã học. Bài tập này thường yêu cầu học sinh vận dụng các công thức, định lý và kỹ năng giải toán đã được học để giải quyết các bài toán thực tế.
Trước khi bắt đầu giải bài tập, điều quan trọng nhất là phải đọc kỹ đề bài và xác định rõ yêu cầu của bài toán. Điều này giúp bạn tránh được những sai sót không đáng có và tìm ra phương pháp giải phù hợp.
Để giải bài 74 trang 36 Sách bài tập Toán 12 - Cánh Diều, bạn có thể thực hiện theo các bước sau:
Giả sử bài 74 yêu cầu tính đạo hàm của một hàm số. Bạn cần xác định hàm số đó, áp dụng quy tắc đạo hàm phù hợp và thực hiện các phép tính để tìm ra đạo hàm của hàm số.
Ngoài việc giải bài 74 trang 36 Sách bài tập Toán 12 - Cánh Diều, bạn nên dành thời gian để ôn tập lại các kiến thức đã học và thực hành thêm nhiều bài tập khác. Điều này giúp bạn nắm vững kiến thức và kỹ năng giải toán, chuẩn bị tốt cho các kỳ thi sắp tới.
Kiến thức về đạo hàm và tích phân có ứng dụng rất lớn trong thực tế, đặc biệt là trong các lĩnh vực như vật lý, kỹ thuật và kinh tế. Việc hiểu rõ và vận dụng thành thạo các kiến thức này sẽ giúp bạn giải quyết các bài toán thực tế một cách hiệu quả.
Bài 74 trang 36 Sách bài tập Toán 12 - Cánh Diều là một bài tập quan trọng giúp bạn củng cố kiến thức và kỹ năng giải toán. Hy vọng rằng với hướng dẫn chi tiết này, bạn sẽ có thể giải bài tập một cách dễ dàng và hiệu quả. Chúc bạn học tập tốt!