Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho bài 88 trang 40 Sách bài tập Toán 12 - Cánh Diều. Bài viết này sẽ giúp bạn nắm vững kiến thức và kỹ năng giải toán, tự tin hơn trong các kỳ thi.
Chúng tôi hiểu rằng việc giải toán đôi khi có thể gặp khó khăn. Vì vậy, đội ngũ giáo viên giàu kinh nghiệm của giaitoan.edu.vn đã biên soạn lời giải bài 88 trang 40 một cách cẩn thận, đảm bảo tính chính xác và dễ tiếp thu.
Cho hàm số (fleft( x right)) có đạo hàm (f'left( x right) = {x^2}{left( {x + 1} right)^2}left( {x - 1} right)left( {x + 2} right),forall x in mathbb{R}). Điểm cực đại của hàm số đã cho là: A. ‒1. B. ‒2. C. 2. D. 1.
Đề bài
Cho hàm số \(f\left( x \right)\) có đạo hàm \(f'\left( x \right) = {x^2}{\left( {x + 1} \right)^2}\left( {x - 1} \right)\left( {x + 2} \right),\forall x \in \mathbb{R}\). Điểm cực đại của hàm số đã cho là:
A. ‒1.
B. ‒2.
C. 2.
D. 1.
Phương pháp giải - Xem chi tiết
Các bước để tìm điểm cực trị của hàm số \(f\left( x \right)\):
Bước 1. Tìm tập xác định của hàm số \(f\left( x \right)\).
Bước 2. Tính đạo hàm \(f'\left( x \right)\). Tìm các điểm \({x_i}\left( {i = 1,2,...,n} \right)\) mà tại đó hàm số có đạo hàm bằng 0 hoặc không tồn tại.
Bước 3. Sắp xếp các điểm \({x_i}\) theo thứ tự tăng dần và lập bảng biến thiên.
Bước 4. Căn cứ vào bảng biến thiên, nêu kết luận về các điểm cực trị của hàm số.
Lời giải chi tiết
Hàm số có tập xác định là \(\mathbb{R}\).
Ta có: \(y' = 0\) khi \(x = 0;x = - 1;x = 1\) hoặc \(x = - 2\).
Bảng xét dấu đạo hàm của hàm số:
Dựa vào bảng xét dấu đạo hàm ta có: Hàm số đạt cực tiểu tại \(x = 1\) và đạt cực đại tại \(x = - 2\).
Chọn B.
Bài 88 trang 40 Sách bài tập Toán 12 - Cánh Diều thuộc chương trình học Toán 12, tập trung vào việc ôn tập và củng cố kiến thức về các chủ đề đã học. Bài tập này thường yêu cầu học sinh vận dụng các công thức, định lý và kỹ năng giải toán đã được trang bị để giải quyết các bài toán thực tế.
Bài 88 thường bao gồm các dạng bài tập sau:
Để giải bài 88 trang 40 Sách bài tập Toán 12 - Cánh Diều một cách hiệu quả, bạn cần:
Đề bài: Cho hàm số y = x3 - 3x2 + 2. Tìm tập xác định và tập giá trị của hàm số.
Giải:
x | -∞ | 0 | 2 | +∞ |
---|---|---|---|---|
y' | + | 0 | - | + |
y | -∞ | 2 | -2 | +∞ |
Từ bảng biến thiên, ta thấy hàm số đạt cực đại tại x = 0 với giá trị y = 2 và đạt cực tiểu tại x = 2 với giá trị y = -2. Do đó, tập giá trị của hàm số là [-2; +∞).
Để đạt kết quả tốt nhất khi giải bài 88 trang 40 Sách bài tập Toán 12 - Cánh Diều, bạn nên:
Chúc bạn học tốt và đạt kết quả cao trong môn Toán 12!