Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho bài 44 trang 65 Sách bài tập Toán 12 - Cánh Diều. Bài viết này sẽ giúp bạn nắm vững kiến thức và kỹ năng giải toán, tự tin hơn trong các kỳ thi.
Chúng tôi hiểu rằng việc giải toán đôi khi có thể gặp khó khăn. Vì vậy, đội ngũ giáo viên giàu kinh nghiệm của giaitoan.edu.vn đã biên soạn lời giải bài 44 trang 65 một cách cẩn thận, đảm bảo tính chính xác và dễ tiếp thu.
Tâm của mặt cầu (left( S right):{x^2} + {y^2} + {z^2} - {rm{x}} - 10z - 6 = 0) có toạ độ là: A. (left( { - frac{1}{2};0; - 5} right)). B. (left( {frac{1}{2};0;3} right)). C. (left( {frac{1}{2};0;5} right)). D. (left( { - frac{1}{2};0; - 3} right)).
Đề bài
Tâm của mặt cầu \(\left( S \right):{x^2} + {y^2} + {z^2} - {\rm{x}} - 10z - 6 = 0\) có toạ độ là:
A. \(\left( { - \frac{1}{2};0; - 5} \right)\).
B. \(\left( {\frac{1}{2};0;3} \right)\).
C. \(\left( {\frac{1}{2};0;5} \right)\).
D. \(\left( { - \frac{1}{2};0; - 3} \right)\).
Phương pháp giải - Xem chi tiết
Phương trình \({x^2} + {y^2} + {z^2} - 2{\rm{ax}} - 2by - 2cz + d = 0\) là phương trình mặt cầu khi và chỉ khi \({a^2} + {b^2} + {c^2} - d > 0\). Khi đó mặt cầu có tâm \(I\left( {a;b;c} \right)\) và bán kính \(R = \sqrt {{a^2} + {b^2} + {c^2} - d} \).
Lời giải chi tiết
Mặt cầu \(\left( S \right):{x^2} + {y^2} + {z^2} - {\rm{x}} - 10z - 6 = 0\) có tâm \(I\left( {\frac{1}{2};0;5} \right)\).
Chọn C.
Bài 44 trang 65 Sách bài tập Toán 12 - Cánh Diều thuộc chương trình học Toán 12, tập trung vào việc ôn tập và củng cố kiến thức về các chủ đề đã học. Bài tập này thường yêu cầu học sinh vận dụng các công thức, định lý và kỹ năng giải toán đã được trang bị để giải quyết các bài toán thực tế.
Trước khi bắt đầu giải bài 44, điều quan trọng là phải đọc kỹ đề bài, xác định rõ yêu cầu và các dữ kiện đã cho. Sau đó, cần lựa chọn phương pháp giải phù hợp với từng dạng bài. Một số phương pháp thường được sử dụng trong việc giải các bài toán trong chương trình Toán 12 bao gồm:
Để giúp bạn hiểu rõ hơn về cách giải bài 44 trang 65, chúng tôi sẽ trình bày lời giải chi tiết từng bước như sau:
(Giả sử bài 44 là một bài toán về đạo hàm hàm số)
Đề bài: Cho hàm số y = f(x) = x3 - 3x2 + 2. Tìm đạo hàm f'(x) và xác định các điểm cực trị của hàm số.
Lời giải:
f'(x) = 3x2 - 6x
Để tìm các điểm cực trị, ta giải phương trình f'(x) = 0:
3x2 - 6x = 0
3x(x - 2) = 0
Vậy, x = 0 hoặc x = 2
Ta xét dấu của f'(x) trên các khoảng:
Vậy, hàm số đạt cực đại tại x = 0 và cực tiểu tại x = 2.
Giá trị cực đại là f(0) = 2.
Giá trị cực tiểu là f(2) = 23 - 3(22) + 2 = 8 - 12 + 2 = -2.
Để đạt kết quả tốt trong các bài kiểm tra và kỳ thi Toán 12, bạn cần lưu ý một số điều sau:
Kiến thức Toán 12 không chỉ quan trọng trong học tập mà còn có nhiều ứng dụng trong thực tế. Ví dụ, kiến thức về đạo hàm được sử dụng trong kinh tế học để tối ưu hóa lợi nhuận, kiến thức về tích phân được sử dụng trong vật lý để tính diện tích và thể tích. Do đó, việc học tốt Toán 12 sẽ giúp bạn có nhiều cơ hội thành công trong tương lai.
Bài 44 trang 65 Sách bài tập Toán 12 - Cánh Diều là một bài tập quan trọng giúp bạn củng cố kiến thức và kỹ năng giải toán. Hy vọng rằng với lời giải chi tiết và những lưu ý trên, bạn sẽ tự tin hơn trong việc giải bài tập này và đạt kết quả tốt trong các kỳ thi. Hãy tiếp tục luyện tập và khám phá thêm nhiều kiến thức thú vị trong môn Toán nhé!