Logo Header
  1. Môn Toán
  2. Giải bài 48 trang 66 sách bài tập toán 12 - Cánh diều

Giải bài 48 trang 66 sách bài tập toán 12 - Cánh diều

Giải bài 48 trang 66 Sách bài tập Toán 12 - Cánh Diều

Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và chính xác cho bài tập 48 trang 66 sách bài tập Toán 12 chương trình Cánh Diều. Bài viết này sẽ giúp bạn hiểu rõ phương pháp giải và nắm vững kiến thức Toán học.

Chúng tôi hiểu rằng việc giải bài tập Toán 12 có thể gặp nhiều khó khăn. Vì vậy, đội ngũ giáo viên giàu kinh nghiệm của giaitoan.edu.vn đã biên soạn lời giải dễ hiểu, kèm theo các bước giải chi tiết, giúp bạn tự tin hơn trong quá trình học tập.

Cho hai điểm (Ileft( { - 2;4;5} right)) và (Mleft( {1;2;7} right)). Mặt cầu tâm (I) đi qua điểm (M) có phương trình là: A. ({left( {x - 2} right)^2} + {left( {y + 4} right)^2} + {left( {z + 5} right)^2} = sqrt {17} ). B. ({left( {x + 2} right)^2} + {left( {y - 4} right)^2} + {left( {z - 5} right)^2} = sqrt {17} ). C. ({left( {x - 2} right)^2} + {left( {y + 4} right)^2} + {left( {z + 5} right)^2} = sqrt {17} ). D. ({left( {x + 2} right)^2} + {left( {

Đề bài

Cho hai điểm \(I\left( { - 2;4;5} \right)\) và \(M\left( {1;2;7} \right)\). Mặt cầu tâm \(I\) đi qua điểm \(M\) có phương trình là:

A. \({\left( {x - 2} \right)^2} + {\left( {y + 4} \right)^2} + {\left( {z + 5} \right)^2} = \sqrt {17} \).

B. \({\left( {x + 2} \right)^2} + {\left( {y - 4} \right)^2} + {\left( {z - 5} \right)^2} = \sqrt {17} \).

C. \({\left( {x - 2} \right)^2} + {\left( {y + 4} \right)^2} + {\left( {z + 5} \right)^2} = \sqrt {17} \).

D. \({\left( {x + 2} \right)^2} + {\left( {y - 4} \right)^2} + {\left( {z - 5} \right)^2} = 17\).

Phương pháp giải - Xem chi tiếtGiải bài 48 trang 66 sách bài tập toán 12 - Cánh diều 1

‒ Để viết phương trình mặt cầu, ta tìm tâm và bán kính mặt cầu.

‒ Phương trình của mặt cầu tâm \(I\left( {a;b;c} \right)\) bán kính \(R\) là: \({\left( {x - a} \right)^2} + {\left( {y - b} \right)^2} + {\left( {z - c} \right)^2} = {R^2}\).

Lời giải chi tiết

Bán kính của mặt cầu đó bằng:

\(R = IM = \sqrt {{{\left( {1 - \left( { - 2} \right)} \right)}^2} + {{\left( {2 - 4} \right)}^2} + {{\left( {7 - 5} \right)}^2}} = \sqrt {17} \).

Vậy phương trình mặt cầu đó là:

\({\left( {x + 2} \right)^2} + {\left( {y - 4} \right)^2} + {\left( {z - 5} \right)^2} = {\left( {\sqrt {17} } \right)^2}\) hay \({\left( {x + 2} \right)^2} + {\left( {y - 4} \right)^2} + {\left( {z - 5} \right)^2} = 17\).

Chọn D.

Tự tin bứt phá Kỳ thi THPT Quốc gia môn Toán! Đừng bỏ lỡ Giải bài 48 trang 66 sách bài tập toán 12 - Cánh diều đặc sắc thuộc chuyên mục toán lớp 12 trên nền tảng soạn toán. Với bộ bài tập toán thpt được biên soạn chuyên sâu, bám sát cấu trúc đề thi và chương trình Toán 12, đây chính là "chiến lược vàng" giúp các em tối ưu hóa ôn luyện. Học sinh sẽ không chỉ làm chủ mọi dạng bài thi mà còn nắm vững chiến thuật làm bài hiệu quả, sẵn sàng tự tin chinh phục điểm cao, vững bước vào đại học mơ ước nhờ phương pháp học trực quan, khoa học và hiệu quả học tập vượt trội!

Giải bài 48 trang 66 Sách bài tập Toán 12 - Cánh Diều: Tổng quan

Bài 48 trang 66 sách bài tập Toán 12 Cánh Diều thuộc chương trình học về Đạo hàm. Bài tập này thường tập trung vào việc vận dụng các quy tắc tính đạo hàm của hàm số, đặc biệt là đạo hàm của hàm hợp và đạo hàm của hàm lượng giác. Việc nắm vững kiến thức về đạo hàm là nền tảng quan trọng để giải quyết các bài toán liên quan đến cực trị, điểm uốn và ứng dụng của đạo hàm trong các lĩnh vực khác.

Nội dung chi tiết bài 48 trang 66 SBT Toán 12 Cánh Diều

Bài 48 thường bao gồm các dạng bài tập sau:

  • Dạng 1: Tính đạo hàm của hàm số lượng giác: Yêu cầu tính đạo hàm của các hàm số có chứa các hàm lượng giác như sin, cos, tan, cot.
  • Dạng 2: Tính đạo hàm của hàm hợp: Yêu cầu tính đạo hàm của các hàm số được tạo thành từ việc hợp của nhiều hàm số khác nhau.
  • Dạng 3: Áp dụng quy tắc đạo hàm để giải phương trình: Yêu cầu sử dụng đạo hàm để giải các phương trình liên quan đến hàm số.

Lời giải chi tiết bài 48 trang 66 SBT Toán 12 Cánh Diều

Để giúp bạn hiểu rõ hơn về cách giải bài tập này, chúng ta sẽ đi vào giải chi tiết từng câu hỏi. (Lưu ý: Do độ dài của bài tập, chúng tôi sẽ trình bày lời giải mẫu cho một số câu hỏi tiêu biểu. Bạn có thể tham khảo cách giải này để áp dụng cho các câu hỏi còn lại.)

Ví dụ 1: Tính đạo hàm của hàm số y = sin(2x + 1)

Lời giải:

Sử dụng quy tắc đạo hàm của hàm hợp, ta có:

y' = cos(2x + 1) * (2x + 1)' = 2cos(2x + 1)

Ví dụ 2: Tính đạo hàm của hàm số y = tan2(x)

Lời giải:

Sử dụng quy tắc đạo hàm của hàm hợp và quy tắc đạo hàm của hàm số mũ, ta có:

y' = 2tan(x) * (tan(x))' = 2tan(x) * (1/cos2(x)) = 2tan(x)/cos2(x)

Các lưu ý khi giải bài tập về đạo hàm

Để giải bài tập về đạo hàm một cách hiệu quả, bạn cần lưu ý những điều sau:

  • Nắm vững các quy tắc tính đạo hàm cơ bản: Đạo hàm của hàm số lũy thừa, hàm số lượng giác, hàm số mũ, hàm số logarit.
  • Thành thạo quy tắc đạo hàm của hàm hợp: Đây là quy tắc quan trọng nhất để giải các bài tập phức tạp.
  • Sử dụng các công thức đạo hàm một cách linh hoạt: Tùy thuộc vào từng bài toán cụ thể, bạn cần lựa chọn công thức đạo hàm phù hợp.
  • Kiểm tra lại kết quả: Sau khi tính đạo hàm, hãy kiểm tra lại kết quả để đảm bảo tính chính xác.

Tài liệu tham khảo hữu ích

Để nâng cao kiến thức về đạo hàm, bạn có thể tham khảo các tài liệu sau:

  • Sách giáo khoa Toán 12
  • Sách bài tập Toán 12
  • Các trang web học Toán online uy tín
  • Các video bài giảng về đạo hàm trên YouTube

Kết luận

Bài 48 trang 66 sách bài tập Toán 12 Cánh Diều là một bài tập quan trọng để rèn luyện kỹ năng tính đạo hàm. Hy vọng rằng với lời giải chi tiết và các lưu ý trên, bạn sẽ tự tin hơn trong quá trình học tập và giải quyết các bài toán liên quan đến đạo hàm. Chúc bạn học tốt!

Tài liệu, đề thi và đáp án Toán 12