Chào mừng các em học sinh đến với lời giải chi tiết bài 8 trang 120 SGK Toán 7 tập 2 - Cánh diều trên giaitoan.edu.vn. Bài viết này sẽ giúp các em hiểu rõ cách giải bài tập, nắm vững kiến thức và tự tin hơn trong quá trình học tập môn Toán.
Giaitoan.edu.vn luôn đồng hành cùng các em học sinh, cung cấp đáp án chính xác, phương pháp giải dễ hiểu và nhiều tài liệu học tập hữu ích khác.
Cho tam giác ABC có O là giao điểm của ba đường trung trực. Qua các điểm A, B, C lần lượt kẻ các đường thẳng vuông góc với OA, OB, OC, hai trong ba đường đó lần lượt cắt nhau tại M, N, P (Hình 144). Chứng minh:
Đề bài
Cho tam giác ABC có O là giao điểm của ba đường trung trực. Qua các điểm A, B, C lần lượt kẻ các đường thẳng vuông góc với OA, OB, OC, hai trong ba đường đó lần lượt cắt nhau tại M, N, P (Hình 144). Chứng minh:
a) \(\Delta OMA = \Delta OMB\) và tia MO là tia phân giác của góc NMP;
b) O là giao điểm của ba đường phân giác của tam giác MNP.
Phương pháp giải - Xem chi tiết
a) Chứng minh hai tam giác bằng nhau theo trường hợp cạnh huyền – cạnh góc vuông.
b) Chứng minh dựa vào kết quả của phần a).
Lời giải chi tiết
a) O là giao điểm của ba đường trung trực của tam giác ABC nên O cách đều ba đỉnh của tam giác đó hay OA = OB = OC.
Xét hai tam giác vuông OAM và OBM có:
OA = OB;
OM chung.
Vậy \(\Delta OAM = \Delta OBM\)(cạnh huyền – cạnh góc vuông).
Suy ra: \(\widehat {OMA} = \widehat {BMO}\) ( 2 góc tương ứng).
Vậy MO là tia phân giác của góc BMA hay MO là tia phân giác của góc NMP (ba điểm M, A, P thẳng hàng và ba điểm M, B, N thẳng hàng).
b) MO là tia phân giác của góc NMP.
Tương tự ta có:
NO là tia phân giác của góc MNP.
PO là tia phân giác của góc MPN.
Vậy O là giao điểm của ba đường phân giác MO, NO, PO của tam giác MNP.
Bài 8 trang 120 SGK Toán 7 tập 2 - Cánh diều thuộc chương trình học Toán 7, tập trung vào việc vận dụng các kiến thức về tam giác cân, tính chất đường trung tuyến trong tam giác, và các định lý liên quan đến góc trong tam giác. Để giải bài tập này một cách hiệu quả, học sinh cần nắm vững các khái niệm cơ bản và phương pháp giải quyết vấn đề.
Bài 8 yêu cầu học sinh giải quyết một bài toán thực tế liên quan đến việc xác định vị trí của một điểm trên mặt phẳng dựa trên các điều kiện cho trước. Bài toán thường liên quan đến việc sử dụng các tính chất của tam giác cân, đường trung tuyến, và các góc trong tam giác để tìm ra lời giải chính xác.
Đề bài: Cho tam giác ABC cân tại A. Gọi D là trung điểm của BC. Chứng minh rằng AD là đường phân giác của góc BAC.
Lời giải:
Hy vọng rằng với lời giải chi tiết và hướng dẫn giải bài tập trong bài viết này, các em học sinh sẽ tự tin hơn trong việc giải bài 8 trang 120 SGK Toán 7 tập 2 - Cánh diều và đạt kết quả tốt trong môn Toán. Chúc các em học tập tốt!