Chào mừng các em học sinh đến với chuyên mục giải bài tập Toán 7 tập 2 của giaitoan.edu.vn. Ở bài viết này, chúng tôi sẽ cung cấp lời giải chi tiết và dễ hiểu cho các bài tập trong mục IV trang 50, 51 sách giáo khoa Toán 7 tập 2 - Cánh diều.
Mục tiêu của chúng tôi là giúp các em nắm vững kiến thức, rèn luyện kỹ năng giải toán và đạt kết quả tốt nhất trong học tập.
Cho đa thức a) Thu gọn đa thức P(x). b) Tìm số mũ cao nhất của x trong dạng thu gọn của P(x).
Cho đa thức \(P(x) = 9{x^4} + 8{x^3} - 6{x^2} + x - 1 - 9{x^4}\).
a) Thu gọn đa thức P(x).
b) Tìm số mũ cao nhất của x trong dạng thu gọn của P(x).
Phương pháp giải:
a) Ta thực hiện phép cộng các đơn thức có cùng số mũ của biến x sao cho trong đa thức P(x) không còn hai đơn thức nào có cùng số mũ của biến x.
b) So sánh số mũ của x trong các đơn thức của P(x) để đưa ra số mũ cao nhất.
Lời giải chi tiết:
a) \(P(x) = 9{x^4} + 8{x^3} - 6{x^2} + x - 1 - 9{x^4} = (9{x^4} - 9{x^4}) + 8{x^3} - 6{x^2} + x - 1 = 8{x^3} - 6{x^2} + x - 1\).
b) Số mũ cao nhất của x trong dạng thu gọn của P(x) là 3.
Cho đa thức
\(R(x) = - 1975{x^3} + 1945{x^4} + 2021{x^5} - 4,5\).
a) Sắp xếp đa thức R(x) theo số mũ giảm dần của biến.
b) Tìm bậc của đa thức R(x).
c) Tìm hệ số cao nhất và hệ số tự do của đa thức R(x).
Phương pháp giải:
a) Sắp xếp đa thức (một biến) theo số mũ giảm dần của biến là sắp xếp các đơn thức trong dạng thu gọn của đa thức đó theo số mũ giảm dần của biến.
b) Bậc của đa thức là số mũ cao nhất của đa thức.
c) Hệ số cao nhất của đa thức là số đi cùng với biến có số mũ cao nhất. Hệ số tự do là số không đi cùng với biến (hay mũ của biến bằng 0).
Lời giải chi tiết:
a) \(R(x) = - 1975{x^3} + 1945{x^4} + 2021{x^5} - 4,5 = 2021{x^5} + 1945{x^4} - 1975{x^3} - 4,5\).
b) Bậc của đa thức R(x) là bậc 5 vì số mũ cao nhất của x trong đa thức là 5.
c) Đa thức R(x) có hệ số cao nhất là 2021 và hệ số tự do là – 4,5.
IV. Bậc của đa thức một biến
Cho đa thức \(P(x) = 9{x^4} + 8{x^3} - 6{x^2} + x - 1 - 9{x^4}\).
a) Thu gọn đa thức P(x).
b) Tìm số mũ cao nhất của x trong dạng thu gọn của P(x).
Phương pháp giải:
a) Ta thực hiện phép cộng các đơn thức có cùng số mũ của biến x sao cho trong đa thức P(x) không còn hai đơn thức nào có cùng số mũ của biến x.
b) So sánh số mũ của x trong các đơn thức của P(x) để đưa ra số mũ cao nhất.
Lời giải chi tiết:
a) \(P(x) = 9{x^4} + 8{x^3} - 6{x^2} + x - 1 - 9{x^4} = (9{x^4} - 9{x^4}) + 8{x^3} - 6{x^2} + x - 1 = 8{x^3} - 6{x^2} + x - 1\).
b) Số mũ cao nhất của x trong dạng thu gọn của P(x) là 3.
Cho đa thức
\(R(x) = - 1975{x^3} + 1945{x^4} + 2021{x^5} - 4,5\).
a) Sắp xếp đa thức R(x) theo số mũ giảm dần của biến.
b) Tìm bậc của đa thức R(x).
c) Tìm hệ số cao nhất và hệ số tự do của đa thức R(x).
Phương pháp giải:
a) Sắp xếp đa thức (một biến) theo số mũ giảm dần của biến là sắp xếp các đơn thức trong dạng thu gọn của đa thức đó theo số mũ giảm dần của biến.
b) Bậc của đa thức là số mũ cao nhất của đa thức.
c) Hệ số cao nhất của đa thức là số đi cùng với biến có số mũ cao nhất. Hệ số tự do là số không đi cùng với biến (hay mũ của biến bằng 0).
Lời giải chi tiết:
a) \(R(x) = - 1975{x^3} + 1945{x^4} + 2021{x^5} - 4,5 = 2021{x^5} + 1945{x^4} - 1975{x^3} - 4,5\).
b) Bậc của đa thức R(x) là bậc 5 vì số mũ cao nhất của x trong đa thức là 5.
c) Đa thức R(x) có hệ số cao nhất là 2021 và hệ số tự do là – 4,5.
Mục IV trong SGK Toán 7 tập 2 - Cánh diều tập trung vào việc ôn tập chương I: Các số hữu tỉ. Đây là một chương quan trọng, đặt nền móng cho các kiến thức toán học ở các lớp trên. Việc nắm vững các khái niệm và kỹ năng trong chương này là vô cùng cần thiết.
Mục IV bao gồm các bài tập tổng hợp, giúp học sinh củng cố kiến thức về:
Bài tập 1 yêu cầu học sinh thực hiện các phép tính cộng, trừ, nhân, chia số hữu tỉ. Để giải bài tập này, học sinh cần nắm vững các quy tắc về dấu của số hữu tỉ và các tính chất của phép toán.
Ví dụ:
a) -3/4 + 5/6 = (-9 + 10)/12 = 1/12
b) 2/3 - 1/2 = (4 - 3)/6 = 1/6
Bài tập 2 yêu cầu học sinh tìm số hữu tỉ x thỏa mãn một phương trình cho trước. Để giải bài tập này, học sinh cần sử dụng các phép biến đổi tương đương để đưa phương trình về dạng đơn giản và tìm ra giá trị của x.
Ví dụ:
x + 2/5 = 1/2
x = 1/2 - 2/5 = (5 - 4)/10 = 1/10
Bài tập 3 thường là các bài toán thực tế liên quan đến số hữu tỉ. Để giải bài tập này, học sinh cần phân tích đề bài, xác định các yếu tố liên quan đến số hữu tỉ và xây dựng phương trình hoặc biểu thức toán học phù hợp.
Ví dụ:
Một người nông dân có 3/5 mảnh đất trồng lúa, 1/4 mảnh đất trồng rau, còn lại là trồng cây ăn quả. Hỏi diện tích đất trồng cây ăn quả bằng bao nhiêu phần diện tích mảnh đất?
Giải:
Phân số chỉ phần diện tích đất trồng lúa và rau là: 3/5 + 1/4 = 17/20
Phân số chỉ phần diện tích đất trồng cây ăn quả là: 1 - 17/20 = 3/20
Ngoài SGK Toán 7 tập 2 - Cánh diều, các em có thể tham khảo thêm các tài liệu sau để nâng cao kiến thức và kỹ năng giải toán:
Hy vọng với lời giải chi tiết và những lưu ý trên, các em học sinh sẽ tự tin giải quyết các bài tập trong mục IV trang 50, 51 SGK Toán 7 tập 2 - Cánh diều. Chúc các em học tập tốt!