Chào mừng các em học sinh đến với chuyên mục giải bài tập Toán 7 tập 1 của giaitoan.edu.vn. Trong bài viết này, chúng ta sẽ cùng nhau giải chi tiết các bài tập trong mục II trang 60 và 61 sách giáo khoa Toán 7 tập 1 - Cánh diều.
Mục tiêu của chúng tôi là giúp các em hiểu rõ bản chất của bài toán, nắm vững kiến thức và kỹ năng giải toán, từ đó đạt kết quả tốt nhất trong học tập.
Cho biết x, y là hai đại lượng tỉ lệ thuận với nhau:
Cho biết x, y là hai đại lượng tỉ lệ thuận với nhau:
x | x1 = 3 | x2 = 5 | X3 = 7 |
y | y1 = 9 | y2 = 15 | y3 = 21 |
a) Hãy xác định hệ số tỉ lệ của y đối với x
b) So sánh các tỉ số: \(\frac{{{y_1}}}{{{x_1}}},\frac{{{y_2}}}{{{x_2}}},\frac{{{y_3}}}{{{x_3}}}\)
c) So sánh các tỉ số: \(\frac{{{x_1}}}{{{x_2}}}\) và \(\frac{{{y_1}}}{{{y_2}}}\); \(\frac{{{x_1}}}{{{x_3}}}\) và \(\frac{{{y_1}}}{{{y_3}}}\)
Phương pháp giải:
+ Nếu đại lượng y liên hệ với đại lượng x theo công thức y = k.x (k là hằng số khác 0) thì y tỉ lệ thuận với x theo hệ số tỉ lệ k
+ Tính các tỉ số rồi so sánh
a) Hãy xác định hệ số tỉ lệ của y đối với x
b) So sánh các tỉ số: \(\frac{{{y_1}}}{{{x_1}}},\frac{{{y_2}}}{{{x_2}}},\frac{{{y_3}}}{{{x_3}}}\)
c) So sánh các tỉ số: \(\frac{{{x_1}}}{{{x_2}}}\) và \(\frac{{{y_1}}}{{{y_2}}}\); \(\frac{{{x_1}}}{{{x_3}}}\) và \(\frac{{{y_1}}}{{{y_3}}}\)
Lời giải chi tiết:
a) Vì hai đại lượng x,y tỉ lệ thuận, liên hệ với nhau bởi công thức y = 3.x nên hệ số tỉ lệ k = 3
b) Ta có:
\(\begin{array}{l}\frac{{{y_1}}}{{{x_1}}} = \frac{9}{3} = 3;\frac{{{y_2}}}{{{x_2}}} = \frac{{15}}{5} = 3;\frac{{{y_3}}}{{{x_3}}} = \frac{{21}}{7} = 3\\ \Rightarrow \frac{{{y_1}}}{{{x_1}}} = \frac{{{y_2}}}{{{x_2}}} = \frac{{{y_3}}}{{{x_3}}}\end{array}\)
c) Ta có:
\(\begin{array}{l}\frac{{{x_1}}}{{{x_2}}} = \frac{3}{5};\frac{{{y_1}}}{{{y_2}}} = \frac{9}{{15}} = \frac{3}{5} \Rightarrow \frac{{{x_1}}}{{{x_2}}} = \frac{{{y_1}}}{{{y_2}}}\\\frac{{{x_1}}}{{{x_3}}} = \frac{3}{7};\frac{{{y_1}}}{{{y_3}}} = \frac{9}{{21}} = \frac{3}{7} \Rightarrow \frac{{{x_1}}}{{{x_3}}} = \frac{{{y_1}}}{{{y_3}}}\end{array}\)
Cho biết x, y là hai đại lượng tỉ lệ thuận với nhau:
x | x1 = 3 | x2 = 5 | X3 = 7 |
y | y1 = 9 | y2 = 15 | y3 = 21 |
a) Hãy xác định hệ số tỉ lệ của y đối với x
b) So sánh các tỉ số: \(\frac{{{y_1}}}{{{x_1}}},\frac{{{y_2}}}{{{x_2}}},\frac{{{y_3}}}{{{x_3}}}\)
c) So sánh các tỉ số: \(\frac{{{x_1}}}{{{x_2}}}\) và \(\frac{{{y_1}}}{{{y_2}}}\); \(\frac{{{x_1}}}{{{x_3}}}\) và \(\frac{{{y_1}}}{{{y_3}}}\)
Phương pháp giải:
+ Nếu đại lượng y liên hệ với đại lượng x theo công thức y = k.x (k là hằng số khác 0) thì y tỉ lệ thuận với x theo hệ số tỉ lệ k
+ Tính các tỉ số rồi so sánh
a) Hãy xác định hệ số tỉ lệ của y đối với x
b) So sánh các tỉ số: \(\frac{{{y_1}}}{{{x_1}}},\frac{{{y_2}}}{{{x_2}}},\frac{{{y_3}}}{{{x_3}}}\)
c) So sánh các tỉ số: \(\frac{{{x_1}}}{{{x_2}}}\) và \(\frac{{{y_1}}}{{{y_2}}}\); \(\frac{{{x_1}}}{{{x_3}}}\) và \(\frac{{{y_1}}}{{{y_3}}}\)
Lời giải chi tiết:
a) Vì hai đại lượng x,y tỉ lệ thuận, liên hệ với nhau bởi công thức y = 3.x nên hệ số tỉ lệ k = 3
b) Ta có:
\(\begin{array}{l}\frac{{{y_1}}}{{{x_1}}} = \frac{9}{3} = 3;\frac{{{y_2}}}{{{x_2}}} = \frac{{15}}{5} = 3;\frac{{{y_3}}}{{{x_3}}} = \frac{{21}}{7} = 3\\ \Rightarrow \frac{{{y_1}}}{{{x_1}}} = \frac{{{y_2}}}{{{x_2}}} = \frac{{{y_3}}}{{{x_3}}}\end{array}\)
c) Ta có:
\(\begin{array}{l}\frac{{{x_1}}}{{{x_2}}} = \frac{3}{5};\frac{{{y_1}}}{{{y_2}}} = \frac{9}{{15}} = \frac{3}{5} \Rightarrow \frac{{{x_1}}}{{{x_2}}} = \frac{{{y_1}}}{{{y_2}}}\\\frac{{{x_1}}}{{{x_3}}} = \frac{3}{7};\frac{{{y_1}}}{{{y_3}}} = \frac{9}{{21}} = \frac{3}{7} \Rightarrow \frac{{{x_1}}}{{{x_3}}} = \frac{{{y_1}}}{{{y_3}}}\end{array}\)
Mục II trong SGK Toán 7 tập 1 - Cánh diều tập trung vào việc ôn tập và củng cố các kiến thức về số nguyên, số hữu tỉ, và các phép toán trên chúng. Các bài tập trong mục này thường yêu cầu học sinh vận dụng các kiến thức đã học để giải quyết các bài toán thực tế, cũng như rèn luyện kỹ năng tính toán và tư duy logic.
Bài tập 1 yêu cầu học sinh điền vào bảng với các số nguyên thích hợp. Để giải bài tập này, học sinh cần nắm vững khái niệm về số nguyên, số đối của một số nguyên, và cách sắp xếp các số nguyên trên trục số.
Ví dụ:
Bài tập 2 yêu cầu học sinh thực hiện các phép tính cộng, trừ, nhân, chia số nguyên. Để giải bài tập này, học sinh cần nắm vững các quy tắc về phép tính trên số nguyên, bao gồm quy tắc dấu, quy tắc ưu tiên thực hiện phép tính.
Ví dụ:
Bài tập 3 yêu cầu học sinh giải các bài toán có liên quan đến số nguyên và các phép toán trên chúng. Các bài toán này thường có tính ứng dụng cao, giúp học sinh hiểu rõ hơn về vai trò của số nguyên trong đời sống thực tế.
Ví dụ: Một người nông dân có 1000 đồng. Anh ta mua 3 kg gạo với giá 20000 đồng/kg. Hỏi anh ta còn lại bao nhiêu tiền?
Lời giải: Số tiền anh ta mua gạo là 3 * 20000 = 60000 đồng. Số tiền anh ta còn lại là 100000 - 60000 = 40000 đồng.
Bài tập 4 thường là một bài toán tổng hợp, yêu cầu học sinh vận dụng nhiều kiến thức và kỹ năng đã học để giải quyết. Để giải bài tập này, học sinh cần phân tích đề bài một cách cẩn thận, xác định các thông tin quan trọng, và lựa chọn phương pháp giải phù hợp.
Ngoài sách giáo khoa, học sinh có thể tham khảo thêm các tài liệu sau để học tốt môn Toán 7:
Hy vọng rằng với bài viết này, các em học sinh đã có thể giải quyết thành công các bài tập trong mục II trang 60, 61 SGK Toán 7 tập 1 - Cánh diều. Chúc các em học tập tốt và đạt kết quả cao trong môn Toán!