Chào mừng các em học sinh đến với chuyên mục giải bài tập Toán 7 tại giaitoan.edu.vn. Trong bài viết này, chúng ta sẽ cùng nhau giải chi tiết các bài tập trong mục II trang 56 và 57 sách giáo khoa Toán 7 tập 1 - Cánh diều.
Mục tiêu của chúng tôi là giúp các em hiểu rõ bản chất của bài học, nắm vững kiến thức và tự tin giải quyết các bài tập tương tự.
a) Cho tỉ lệ thức...Tìm hai số x,y biết: x : 1,2 = y : 0,4 và x – y = 2.
a) Cho tỉ lệ thức\(\frac{6}{{10}} = \frac{9}{{15}}\). So sánh hai tỉ số \(\frac{{6 + 9}}{{10 + 15}}\) và \(\frac{{6 - 9}}{{10 - 15}}\) với các tỉ số trong tỉ lệ thức đã cho.
b) Cho tỉ lệ thức \(\frac{a}{b} = \frac{c}{d}\) với \(b + d \ne 0;b - d \ne 0\)
Gọi giá trị trung của các tỉ số đó là k, tức là: \(k = \frac{a}{b} = \frac{c}{d}\)
- Tính a theo b và k, tính c theo d và k.
- Tính tỉ số \(\frac{{a + c}}{{b + d}}\) và \(\frac{{a - c}}{{b - d}}\) theo k.
- So sánh mỗi tỉ số \(\frac{{a + c}}{{b + d}}\) và \(\frac{{a - c}}{{b - d}}\) với các tỉ số \(\frac{a}{b}\) và \(\frac{c}{d}\)
Phương pháp giải:
Tính các tỉ số rồi so sánh
Lời giải chi tiết:
a) Ta có:
\(\begin{array}{l}\frac{6}{{10}} = \frac{{6:2}}{{10:2}} = \frac{3}{5};\\\frac{9}{{15}} = \frac{{9:3}}{{15:3}} = \frac{3}{5}\end{array}\)
\(\begin{array}{l}\frac{{6 + 9}}{{10 + 15}} = \frac{{15}}{{25}} = \frac{{15:5}}{{25:5}} = \frac{3}{5};\\\frac{{6 - 9}}{{10 - 15}} = \frac{{ - 3}}{{ - 5}} = \frac{3}{5}\end{array}\)
Ta được: \(\frac{{6 + 9}}{{10 + 15}} = \frac{{6 - 9}}{{10 - 15}} = \frac{6}{{10}} = \frac{9}{{15}}\)
b) - Vì \(k = \frac{a}{b} \Rightarrow a = k.b\)
Vì \(k = \frac{c}{d} \Rightarrow c = k.d\)
- Ta có:
\(\begin{array}{l}\frac{{a + c}}{{b + d}} = \frac{{k.b + k.d}}{{b + d}} = \frac{{k.(b + d)}}{{b + d}} = k;\\\frac{{a - c}}{{b - d}} = \frac{{k.b - k.d}}{{b - d}} = \frac{{k.(b - d)}}{{b - d}} = k\end{array}\)
- Như vậy, \(\frac{{a + c}}{{b + d}}\) =\(\frac{{a - c}}{{b - d}}\) = \(\frac{a}{b}\) =\(\frac{c}{d}\)( =k)
a) Cho tỉ lệ thức\(\frac{6}{{10}} = \frac{9}{{15}}\). So sánh hai tỉ số \(\frac{{6 + 9}}{{10 + 15}}\) và \(\frac{{6 - 9}}{{10 - 15}}\) với các tỉ số trong tỉ lệ thức đã cho.
b) Cho tỉ lệ thức \(\frac{a}{b} = \frac{c}{d}\) với \(b + d \ne 0;b - d \ne 0\)
Gọi giá trị trung của các tỉ số đó là k, tức là: \(k = \frac{a}{b} = \frac{c}{d}\)
- Tính a theo b và k, tính c theo d và k.
- Tính tỉ số \(\frac{{a + c}}{{b + d}}\) và \(\frac{{a - c}}{{b - d}}\) theo k.
- So sánh mỗi tỉ số \(\frac{{a + c}}{{b + d}}\) và \(\frac{{a - c}}{{b - d}}\) với các tỉ số \(\frac{a}{b}\) và \(\frac{c}{d}\)
Phương pháp giải:
Tính các tỉ số rồi so sánh
Lời giải chi tiết:
a) Ta có:
\(\begin{array}{l}\frac{6}{{10}} = \frac{{6:2}}{{10:2}} = \frac{3}{5};\\\frac{9}{{15}} = \frac{{9:3}}{{15:3}} = \frac{3}{5}\end{array}\)
\(\begin{array}{l}\frac{{6 + 9}}{{10 + 15}} = \frac{{15}}{{25}} = \frac{{15:5}}{{25:5}} = \frac{3}{5};\\\frac{{6 - 9}}{{10 - 15}} = \frac{{ - 3}}{{ - 5}} = \frac{3}{5}\end{array}\)
Ta được: \(\frac{{6 + 9}}{{10 + 15}} = \frac{{6 - 9}}{{10 - 15}} = \frac{6}{{10}} = \frac{9}{{15}}\)
b) - Vì \(k = \frac{a}{b} \Rightarrow a = k.b\)
Vì \(k = \frac{c}{d} \Rightarrow c = k.d\)
- Ta có:
\(\begin{array}{l}\frac{{a + c}}{{b + d}} = \frac{{k.b + k.d}}{{b + d}} = \frac{{k.(b + d)}}{{b + d}} = k;\\\frac{{a - c}}{{b - d}} = \frac{{k.b - k.d}}{{b - d}} = \frac{{k.(b - d)}}{{b - d}} = k\end{array}\)
- Như vậy, \(\frac{{a + c}}{{b + d}}\) =\(\frac{{a - c}}{{b - d}}\) = \(\frac{a}{b}\) =\(\frac{c}{d}\)( =k)
Tìm hai số x,y biết:
x : 1,2 = y : 0,4 và x – y = 2.
Phương pháp giải:
Sử dụng tính chất của dãy tỉ số bằng nhau: \(\frac{a}{b} = \frac{c}{d} = \frac{{a - c}}{{b - d}}\)
Lời giải chi tiết:
Vì x : 1,2 = y : 0,4 nên \(\frac{x}{{1,2}} = \frac{y}{{0,4}}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{{1,2}} = \frac{y}{{0,4}} = \frac{{x - y}}{{1,2 - 0,4}} = \frac{2}{{0,8}} = 2,5\)
Vậy x = 1,2 . 2,5 = 3; y = 0,4 . 2,5 = 1
Tìm ba số x,y,z biết x,y,z tỉ lệ với ba số 2,3,4 và x – y – z = 2.
Phương pháp giải:
Sử dụng tính chất của dãy tỉ số bằng nhau: \(\frac{a}{b} = \frac{c}{d} = \frac{e}{f} = \frac{{a - c - e}}{{b - d - f}}\)
Lời giải chi tiết:
Vì ba số x,y,z biết x,y,z tỉ lệ với ba số 2,3,4 nên \(\frac{x}{2} = \frac{y}{3} = \frac{z}{4}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{2} = \frac{y}{3} = \frac{z}{4} = \frac{{x - y - z}}{{2 - 3 - 4}} = \frac{2}{{ - 5}} = \frac{{ - 2}}{5}\)
Vậy \(x = 2.\frac{{ - 2}}{5} = \frac{{ - 4}}{5};y = 3.\frac{{ - 2}}{5} = \frac{{ - 6}}{5};z = 4.\frac{{ - 2}}{5} = \frac{{ - 8}}{5}\)
Tìm ba số x,y,z biết x,y,z tỉ lệ với ba số 2,3,4 và x – y – z = 2.
Phương pháp giải:
Sử dụng tính chất của dãy tỉ số bằng nhau: \(\frac{a}{b} = \frac{c}{d} = \frac{e}{f} = \frac{{a - c - e}}{{b - d - f}}\)
Lời giải chi tiết:
Vì ba số x,y,z biết x,y,z tỉ lệ với ba số 2,3,4 nên \(\frac{x}{2} = \frac{y}{3} = \frac{z}{4}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{2} = \frac{y}{3} = \frac{z}{4} = \frac{{x - y - z}}{{2 - 3 - 4}} = \frac{2}{{ - 5}} = \frac{{ - 2}}{5}\)
Vậy \(x = 2.\frac{{ - 2}}{5} = \frac{{ - 4}}{5};y = 3.\frac{{ - 2}}{5} = \frac{{ - 6}}{5};z = 4.\frac{{ - 2}}{5} = \frac{{ - 8}}{5}\)
Tìm hai số x,y biết:
x : 1,2 = y : 0,4 và x – y = 2.
Phương pháp giải:
Sử dụng tính chất của dãy tỉ số bằng nhau: \(\frac{a}{b} = \frac{c}{d} = \frac{{a - c}}{{b - d}}\)
Lời giải chi tiết:
Vì x : 1,2 = y : 0,4 nên \(\frac{x}{{1,2}} = \frac{y}{{0,4}}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{{1,2}} = \frac{y}{{0,4}} = \frac{{x - y}}{{1,2 - 0,4}} = \frac{2}{{0,8}} = 2,5\)
Vậy x = 1,2 . 2,5 = 3; y = 0,4 . 2,5 = 1
Mục II trong SGK Toán 7 tập 1 - Cánh diều tập trung vào các kiến thức cơ bản về số nguyên, các phép toán trên số nguyên, và ứng dụng của số nguyên trong thực tế. Việc nắm vững kiến thức này là nền tảng quan trọng cho các bài học tiếp theo trong chương trình Toán 7.
Bài tập 1 yêu cầu học sinh thực hiện các phép tính cộng, trừ số nguyên. Để giải bài tập này, các em cần nắm vững quy tắc cộng, trừ số nguyên:
Ví dụ: -3 + (-5) = -8; 2 + (-4) = -2; 5 - (-3) = 5 + 3 = 8
Bài tập 2 thường liên quan đến việc sắp xếp các số nguyên theo thứ tự tăng dần hoặc giảm dần. Để giải bài tập này, các em cần hiểu rõ khái niệm về số nguyên âm, số nguyên dương và số 0. Số nguyên âm nhỏ hơn số nguyên dương và số 0. Trong các số nguyên âm, số nào có giá trị tuyệt đối lớn hơn thì nhỏ hơn.
Ví dụ: Sắp xếp các số nguyên sau theo thứ tự tăng dần: -5, 2, -1, 0, 3. Kết quả: -5, -1, 0, 2, 3
Bài tập 3 có thể yêu cầu học sinh giải các bài toán thực tế liên quan đến số nguyên, ví dụ như bài toán về nhiệt độ, độ cao, hoặc các khoản tiền. Để giải bài tập này, các em cần đọc kỹ đề bài, xác định các yếu tố liên quan đến số nguyên và áp dụng các quy tắc cộng, trừ số nguyên để tìm ra kết quả.
Ví dụ: Nhiệt độ buổi sáng là -2°C, đến trưa nhiệt độ tăng thêm 5°C. Hỏi nhiệt độ buổi trưa là bao nhiêu độ C? Giải: Nhiệt độ buổi trưa là -2 + 5 = 3°C
Bài tập 4 thường là bài tập nâng cao, yêu cầu học sinh vận dụng kiến thức đã học để giải quyết các vấn đề phức tạp hơn. Các em cần suy nghĩ logic, phân tích đề bài và tìm ra phương pháp giải phù hợp.
Để học tốt môn Toán 7, các em cần thường xuyên luyện tập, làm bài tập và tìm hiểu các kiến thức liên quan. Ngoài ra, các em có thể tham gia các khóa học Toán online hoặc tìm kiếm sự giúp đỡ của giáo viên, bạn bè.
Hy vọng với hướng dẫn chi tiết này, các em học sinh sẽ tự tin giải quyết các bài tập trong mục II trang 56, 57 SGK Toán 7 tập 1 - Cánh diều. Chúc các em học tập tốt!