Chào mừng các em học sinh đến với bài giải bài tập 1.2 trang 9 SGK Toán 12 tập 1. Bài tập này thuộc chương trình học môn Toán lớp 12, tập trung vào các kiến thức về hàm số và đồ thị hàm số.
Giaitoan.edu.vn cung cấp lời giải chi tiết, dễ hiểu, giúp các em nắm vững kiến thức và rèn luyện kỹ năng giải toán hiệu quả. Các em có thể tham khảo cách giải và tự kiểm tra kết quả của mình.
a) (y = - {x^3} + {x^2} - 5) b) (y = sqrt {{x^2} - x - 20} ) c) (y = {e^{{x^2}}}) d) (y = frac{x}{{{x^2} + 4}})
Đề bài
a) \(y = - {x^3} + {x^2} - 5\)
b) \(y = \sqrt {{x^2} - x - 20} \)
c) \(y = {e^{{x^2}}}\)
d) \(y = \frac{x}{{{x^2} + 4}}\)
Phương pháp giải - Xem chi tiết
Bước 1: Tính \(y'\)
Bước 2: Lập bảng biến thiên
Bước 3: Xác định hàm số đồng biến, nghịch biến trên khoảng nào
Lời giải chi tiết
a) \(y = - {x^3} + {x^2} - 5\)
Hàm số trên xác định trên R
Ta có : \(y' = - 3{x^2} + 2x\)
Xét \(y' = - 3{x^2} + 2x = 0\)\( \Rightarrow \left[ \begin{array}{l}x = 0\\x = \frac{2}{3}\end{array} \right.\)
Từ đó ta có bảng biến thiên :
Từ bảng biến thiên ta có:
Hàm số đồng biến trên khoảng \(\left( {0;\frac{2}{3}} \right)\)
Hàm số nghịch biến trên khoảng \(( - \infty ;0)\),\(\left( {\frac{2}{3}; + \infty } \right)\)
b) \(y = \sqrt {{x^2} - x - 20} \)
Hàm số trên xác định với \({x^2} - x - 20 \ge 0 \Rightarrow \left[ \begin{array}{l}x \ge 5\\x \le - 4\end{array} \right.\)
Ta có : \(y' = \frac{{2x - 1}}{{2\sqrt {{x^2} - x - 20} }}\)
Xét \(y' = 0\)\( \Rightarrow 2x - 1 = 0\)
\( \Rightarrow x = \frac{1}{2}\)
Từ đó ta có bảng biến thiên:
Từ bảng biến thiên ta có:
Hàm số đồng biến trên khoảng \((5; + \infty )\)
Hàm số nghịch biến trên khoảng \(( - \infty ; - 4)\)
c) \(y = {e^{{x^2}}}\)
Hàm số trên xác định trên R
Ta có: \(y' = {e^{{x^2}}}.2x\)
Xét \(y' = 0\)\( \Rightarrow x = 0\)
Ta có bảng biến thiên
Từ bảng biến thiên ta có:
Hàm số trên nghịch biến trên khoảng\(( - \infty ;0)\)
Hàm số trên đồng biến trên khoảng\((0; + \infty )\)
d) \(y = \frac{x}{{{x^2} + 4}}\)
Hàm số trên xác định trên R
Ta có: \(y' = \frac{{{x^2} + 4 - x.2x}}{{{{({x^2} + 4)}^2}}}\)
\( = \frac{{ - {x^2} + 4}}{{{{({x^2} + 4)}^2}}}\)
Xét \(y' = 0\)\( \Rightarrow - {x^2} + 4 = 0\)\( \Rightarrow \left[ \begin{array}{l}x = 2\\x = - 2\end{array} \right.\)
Ta có bảng biến thiên
Từ bảng biến thiên ta có:
Hàm số trên nghịch biến trên khoảng \(( - \infty ; - 2),(2; + \infty )\)
Hàm số trên đồng biến trên khoảng \(( - 2;2)\)
Bài tập 1.2 trang 9 SGK Toán 12 tập 1 yêu cầu học sinh vận dụng kiến thức về hàm số bậc hai, đặc biệt là các yếu tố như hệ số a, đỉnh của parabol, trục đối xứng và giao điểm với các trục tọa độ để xác định phương trình và vẽ đồ thị hàm số. Việc nắm vững các khái niệm này là nền tảng quan trọng cho việc giải các bài toán phức tạp hơn trong chương trình Toán 12.
Bài tập 1.2 thường bao gồm các dạng câu hỏi sau:
Để giải bài tập 1.2 trang 9 SGK Toán 12 tập 1 một cách hiệu quả, các em cần:
Bài tập: Cho hàm số y = 2x2 - 4x + 1. Hãy xác định hệ số a, b, c, tìm tọa độ đỉnh của parabol, xác định trục đối xứng và vẽ đồ thị hàm số.
Giải:
Dựa vào các yếu tố trên, ta có thể vẽ được đồ thị hàm số y = 2x2 - 4x + 1.
Để củng cố kiến thức và kỹ năng giải bài tập 1.2 trang 9 SGK Toán 12 tập 1, các em có thể luyện tập thêm với các bài tập tương tự trong sách giáo khoa và các tài liệu tham khảo khác. Ngoài ra, các em có thể tham khảo các bài giảng trực tuyến và các video hướng dẫn giải bài tập trên giaitoan.edu.vn.
Bài tập 1.2 trang 9 SGK Toán 12 tập 1 là một bài tập quan trọng giúp các em nắm vững kiến thức về hàm số bậc hai và rèn luyện kỹ năng giải toán. Hy vọng với hướng dẫn chi tiết và ví dụ minh họa trên, các em sẽ giải bài tập này một cách dễ dàng và hiệu quả.