Logo Header
  1. Môn Toán
  2. Giải bài tập 6.8 trang 102 SGK Toán 12 tập 2 - Cùng khám phá

Giải bài tập 6.8 trang 102 SGK Toán 12 tập 2 - Cùng khám phá

Giải bài tập 6.8 trang 102 SGK Toán 12 tập 2

Chào mừng các em học sinh đến với bài giải chi tiết bài tập 6.8 trang 102 SGK Toán 12 tập 2 tại giaitoan.edu.vn. Bài tập này thuộc chương trình học Toán 12, tập trung vào việc vận dụng kiến thức về đạo hàm để giải quyết các bài toán thực tế.

Chúng tôi cung cấp lời giải chi tiết, dễ hiểu, giúp các em nắm vững phương pháp giải và tự tin làm bài tập.

Giả sử có khoảng 40% thư điện tử (email) gửi đến một địa chỉ là thư rác. Người ta sử dụng một thuật toán để phân loại thư rác, biết rằng thuật toán này có thể phân loại đến 99% thư rác và tỉ lệ sai sót khi phân loại thư bình thường thành thư rác là 5%. Tính xác suất một thư điện tử là thư bình thường nếu thư này đã được phân loại đúng.

Đề bài

Giả sử có khoảng 40% thư điện tử (email) gửi đến một địa chỉ là thư rác. Người ta sử dụng một thuật toán để phân loại thư rác, biết rằng thuật toán này có thể phân loại đến 99% thư rác và tỉ lệ sai sót khi phân loại thư bình thường thành thư rác là 5%. Tính xác suất một thư điện tử là thư bình thường nếu thư này đã được phân loại đúng.

Phương pháp giải - Xem chi tiếtGiải bài tập 6.8 trang 102 SGK Toán 12 tập 2 - Cùng khám phá 1

Tính \(P(A|B)\): Xác suất thư là thư bình thường khi thuật toán phân loại đúng.

Sử dụng các công thức sau để tính toán:

Định lý Bayes: \(P(A|B) = \frac{{P(B|A) \cdot P(A)}}{{P(B)}}.\)

Xác suất toàn phần để tính \(P(B)\): \(P(B) = P(B|A) \cdot P(A) + P(B|\bar A) \cdot P(\bar A).\)

Lời giải chi tiết

Gọi

- \(A\): Thư điện tử là thư bình thường.

- \(\bar A\): Thư điện tử là thư rác.

- \(B\): Thuật toán phân loại đúng.

Dữ kiện bài toán:

- \(P(A) = 1 - P(\bar A) = 0,6\), \(P(\bar A) = 0,4\).

- Nếu thư là thư rác (\(\bar A\)), xác suất được phân loại đúng: \(P(B|\bar A) = 0,99\).

- Nếu thư là thư bình thường (\(A\)), xác suất được phân loại đúng:

\(P(B|A) = 1 - 0,05 = 0,95\).

Tính \(P(B)\): \(P(B) = P(B|A) \cdot P(A) + P(B|\bar A) \cdot P(\bar A).\)

\(P(B) = (0,95 \cdot 0,6) + (0,99 \cdot 0,4).\)

\(P(B) = 0,57 + 0,396 = 0,966.\)

Tính \(P(A|B)\): Áp dụng định lý Bayes:

\(P(A|B) = \frac{{P(B|A) \cdot P(A)}}{{P(B)}}.\)

\(P(A|B) = \frac{{0,95 \cdot 0,6}}{{0,966}}.\)

\(P(A|B) \approx \frac{{0,57}}{{0,966}} \approx 0,5901.\)

Xác suất một thư điện tử là thư bình thường nếu thư này đã được phân loại đúng là khoảng \(59,01\% \).

Tự tin bứt phá Kỳ thi THPT Quốc gia môn Toán! Đừng bỏ lỡ Giải bài tập 6.8 trang 102 SGK Toán 12 tập 2 - Cùng khám phá đặc sắc thuộc chuyên mục giải sgk toán 12 trên nền tảng toán math. Với bộ bài tập toán thpt được biên soạn chuyên sâu, bám sát cấu trúc đề thi và chương trình Toán 12, đây chính là "chiến lược vàng" giúp các em tối ưu hóa ôn luyện. Học sinh sẽ không chỉ làm chủ mọi dạng bài thi mà còn nắm vững chiến thuật làm bài hiệu quả, sẵn sàng tự tin chinh phục điểm cao, vững bước vào đại học mơ ước nhờ phương pháp học trực quan, khoa học và hiệu quả học tập vượt trội!

Giải bài tập 6.8 trang 102 SGK Toán 12 tập 2: Phương pháp tiếp cận chi tiết

Bài tập 6.8 trang 102 SGK Toán 12 tập 2 thường liên quan đến việc tìm cực trị của hàm số. Để giải quyết bài toán này, học sinh cần nắm vững các bước sau:

  1. Xác định tập xác định của hàm số: Tìm khoảng mà hàm số có nghĩa.
  2. Tính đạo hàm bậc nhất: Tính f'(x) của hàm số.
  3. Tìm điểm dừng: Giải phương trình f'(x) = 0 để tìm các điểm mà đạo hàm bằng không.
  4. Lập bảng biến thiên: Xác định dấu của đạo hàm trên các khoảng xác định để xác định khoảng hàm số đồng biến, nghịch biến.
  5. Kết luận về cực trị: Dựa vào bảng biến thiên để xác định các điểm cực đại, cực tiểu của hàm số.

Ví dụ minh họa giải bài tập 6.8 trang 102 SGK Toán 12 tập 2

Giả sử bài tập 6.8 yêu cầu tìm cực trị của hàm số f(x) = x3 - 3x2 + 2.

  1. Tập xác định: Hàm số xác định trên R.
  2. Đạo hàm bậc nhất: f'(x) = 3x2 - 6x.
  3. Điểm dừng: 3x2 - 6x = 0 => x = 0 hoặc x = 2.
  4. Bảng biến thiên:
    x-∞02+∞
    f'(x)+-+
    f(x)NBĐBNT
  5. Kết luận: Hàm số đạt cực đại tại x = 0, f(0) = 2 và đạt cực tiểu tại x = 2, f(2) = -2.

Các dạng bài tập tương tự và phương pháp giải

Ngoài bài tập 6.8, SGK Toán 12 tập 2 còn nhiều bài tập tương tự về cực trị hàm số. Các bài tập này có thể có dạng:

  • Tìm cực trị của hàm số đa thức.
  • Tìm cực trị của hàm số hữu tỉ.
  • Tìm cực trị của hàm số lượng giác.
  • Ứng dụng cực trị hàm số để giải các bài toán thực tế.

Để giải các bài tập này, học sinh cần nắm vững các kiến thức về đạo hàm, điểm dừng, bảng biến thiên và các quy tắc tính đạo hàm. Ngoài ra, việc luyện tập thường xuyên với các bài tập khác nhau sẽ giúp học sinh rèn luyện kỹ năng và kinh nghiệm giải toán.

Lưu ý khi giải bài tập về cực trị hàm số

Khi giải bài tập về cực trị hàm số, học sinh cần lưu ý một số điểm sau:

  • Kiểm tra kỹ tập xác định của hàm số.
  • Tính đạo hàm chính xác.
  • Lập bảng biến thiên cẩn thận.
  • Kết luận đúng về cực trị của hàm số.

Tài liệu tham khảo và hỗ trợ học tập

Để hỗ trợ quá trình học tập và giải bài tập, học sinh có thể tham khảo các tài liệu sau:

  • Sách giáo khoa Toán 12 tập 2.
  • Sách bài tập Toán 12 tập 2.
  • Các trang web học toán online uy tín như giaitoan.edu.vn.
  • Các video bài giảng trên YouTube.

Kết luận

Bài tập 6.8 trang 102 SGK Toán 12 tập 2 là một bài tập quan trọng giúp học sinh hiểu rõ về cực trị hàm số. Bằng cách nắm vững các bước giải và luyện tập thường xuyên, học sinh có thể tự tin giải quyết các bài tập tương tự và đạt kết quả tốt trong môn Toán.

Tài liệu, đề thi và đáp án Toán 12