Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 12. Bài viết này sẽ hướng dẫn bạn cách giải bài tập 5.5 trang 51 SGK Toán 12 tập 2 một cách nhanh chóng và hiệu quả.
Chúng tôi luôn cố gắng mang đến những giải pháp học tập tốt nhất, giúp bạn nắm vững kiến thức và tự tin hơn trong các kỳ thi.
Tứ diện ABCD có các đỉnh \((A(5;1;3),B(1;6;2),C(5;0;4),D(4;0;6)\). a) Hãy viết phương trình của các mặt phẳng \((ACD)\) và \((BCD)\). b) Hãy viết phương trình mặt phẳng \(\left( \alpha \right)\) chứa cạnh AB và song song với cạnh CD.
Đề bài
Tứ diện ABCD có các đỉnh \((A(5;1;3),B(1;6;2),C(5;0;4),D(4;0;6)\).
a) Hãy viết phương trình của các mặt phẳng \((ACD)\) và \((BCD)\).
b) Hãy viết phương trình mặt phẳng \(\left( \alpha \right)\) chứa cạnh AB và song song với cạnh CD.
Phương pháp giải - Xem chi tiết
Phương trình mặt phẳng có dạng: \(Ax + By + Cz + D = 0\)
Trong đó:
- \(\vec n = (A,B,C)\) là vectơ pháp tuyến của mặt phẳng.
- Nếu biết một điểm \({M_0}({x_0},{y_0},{z_0})\) thuộc mặt phẳng và vectơ pháp tuyến \(\vec n = (A,B,C)\), phương trình mặt phẳng có thể viết dưới dạng:
\(A(x - {x_0}) + B(y - {y_0}) + C(z - {z_0}) = 0\)
- Nếu mặt phẳng đi qua 3 điểm \(A({x_1},{y_1},{z_1}),B({x_2},{y_2},{z_2}),C({x_3},{y_3},{z_3})\), phương trình mặt phẳng có thể viết bằng cách tìm vectơ pháp tuyến từ hai vectơ \(\overrightarrow {AB} \) và \(\overrightarrow {AC} \).
Lời giải chi tiết
a)
Mặt phẳng \((ACD)\)
- Tính các vectơ \(\overrightarrow {AC} = (0; - 1;1)\) và \(\overrightarrow {AD} = ( - 1; - 1;3).\)
- Tích có hướng:
\(\vec n = \overrightarrow {AC} \times \overrightarrow {AD} = \left( {( - 1).3 - 1.( - 1);\,\,\,1.( - 1) - 0.3;\,\,\,0.( - 1) - ( - 1).( - 1)} \right) = ( - 2; - 1; - 1)\)
Phương trình mặt phẳng \((ACD)\) là:
\( - 2(x - 5) - 1(y - 1) - 1(z - 3) = 0\)
Rút gọn:
\( - 2x + - y - z + 14 = 0\)
\(2x + y + z - 14 = 0\)
Mặt phẳng \((BCD)\)
- Tính các vectơ \(\overrightarrow {BC} = (4; - 6;2)\) và \(\overrightarrow {BD} = (3; - 6;4)\).
- Tích có hướng:
\(\vec n = \overrightarrow {BC} \times \overrightarrow {BD} = \left( {( - 6).4 - 2.( - 6);\,\,2.3 - 4.4;\,\,4.( - 6) - ( - 6).3} \right) = ( - 12; - 10; - 6)\)
Phương trình mặt phẳng \((BCD)\) là:
\( - 12(x - 1) - 10(y - 6) - 6(z - 2) = 0\)
Rút gọn:
\( - 12x - 10y - 6z + 84 = 0\)
Chia cả phương trình cho 2:
\(6x + 5y + 3z - 42 = 0\)
b)
- Tính vectơ \(\overrightarrow {AB} = ( - 4;5; - 1)\) và \(\overrightarrow {CD} = ( - 1;0;2).\)
- Vì mặt phẳng chứa cạnh AB và song song với cạnh CD, nên tích có hướng của hai vectơ \(\overrightarrow {AB} \) và \(\overrightarrow {CD} \) là vectơ pháp tuyến của mặt phẳng:
\(\vec n = \overrightarrow {AB} \times \overrightarrow {CD} = \left( {5.2 - ( - 1).0;\,\,\,( - 1).( - 1) - ( - 4).2;\,\,( - 4).0 - 5.( - 1)} \right) = (10;6;5)\)
Phương trình mặt phẳng là:
\(10(x - 5) + 9(y - 1) + 5(z - 3) = 0\)
Rút gọn:
\(10x + 9y + 5z - 74 = 0\)
Bài tập 5.5 trang 51 SGK Toán 12 tập 2 thuộc chương trình Giải tích, cụ thể là phần Đạo hàm. Bài tập này thường yêu cầu học sinh vận dụng kiến thức về đạo hàm của hàm số để giải quyết các bài toán liên quan đến tính đơn điệu, cực trị của hàm số. Để giải quyết bài tập này một cách hiệu quả, học sinh cần nắm vững các khái niệm và công thức đạo hàm cơ bản, cũng như các phương pháp giải toán thường gặp.
Bài tập 5.5 thường bao gồm các dạng bài sau:
Bài toán: Xét hàm số f(x) = x3 - 3x2 + 2. Tìm khoảng đơn điệu và cực trị của hàm số.
Giải:
x | -∞ | 0 | 2 | +∞ |
---|---|---|---|---|
f'(x) | + | - | + | |
f(x) | Đồng biến | Nghịch biến | Đồng biến |
Ngoài SGK Toán 12 tập 2, bạn có thể tham khảo thêm các tài liệu sau để học tập và ôn luyện:
Hy vọng bài viết này đã cung cấp cho bạn những kiến thức và kỹ năng cần thiết để giải bài tập 5.5 trang 51 SGK Toán 12 tập 2 một cách hiệu quả. Chúc bạn học tập tốt!