Chào mừng các em học sinh đến với bài giải chi tiết bài tập 1.47 trang 49 SGK Toán 12 tập 1. Bài tập này thuộc chương trình học môn Toán lớp 12, tập trung vào việc vận dụng kiến thức về đạo hàm để giải quyết các bài toán thực tế.
Giaitoan.edu.vn cung cấp lời giải chi tiết, dễ hiểu, giúp các em nắm vững kiến thức và kỹ năng giải toán. Các em có thể tham khảo để tự học hoặc ôn tập.
Mỗi đợt xuất khẩu gạo của tỉnh A thường kéo dài trong 60 ngày. Người ta nhận thấy lượng gạo xuất khẩu tính theo ngày thứ \(t\) được xác định bởi công thức: \(S(t) = \frac{2}{5}{t^3} - 63{t^2} + 3240t - 3100\) (tấn) \((1 \le t \le 60)\). Hỏi trong 60 ngày đó, ngày thứ mấy có lượng gạo xuất khẩu cao nhất? A. 60. B. 45. C. 30. D. 25.
Đề bài
Mỗi đợt xuất khẩu gạo của tỉnh A thường kéo dài trong 60 ngày. Người ta nhận thấy lượng gạo xuất khẩu tính theo ngày thứ \(t\) được xác định bởi công thức: \(S(t) = \frac{2}{5}{t^3} - 63{t^2} + 3240t - 3100\) (tấn) \((1 \le t \le 60)\). Hỏi trong 60 ngày đó, ngày thứ mấy có lượng gạo xuất khẩu cao nhất?
A. 60
B. 45
C. 30
D. 25
Phương pháp giải - Xem chi tiết
- Tính đạo hàm của hàm số.
- Giải phương trình đạo hàm bằng 0 để tìm các giá trị t tới hạn trong khoảng [1;60].
- Tính giá trị của hàm số tại các điểm tới hạn và tại các đầu mút.
- So sánh các giá trị của hàm số tại các điểm này để tìm giá trị lớn nhất và xác định ngày tương ứng.
Lời giải chi tiết
Đạo hàm của hàm số: \(S'(t) = \frac{6}{5}{t^2} - 126t + 3240\)
Đặt \(S'(t) = 0:\) \(\frac{6}{5}{t^2} - 126t + 3240 = 0 \Rightarrow \{ _{t = 45}^{t = 60}\)
Tính giá trị của hàm số tại các điểm tới hạn và các điểm biên:
\(S(1) = \frac{2}{5}{(1)^3} - 63{(1)^2} + 3240(1) - 3100 = \frac{2}{5} - 63 + 3240 - 3100 = 0.4 - 63 + 3240 - 3100 = 77.4\)
\(S(60) = \frac{2}{5}{(60)^3} - 63{(60)^2} + 3240(60) - 3100 = 86400 - 226800 + 194400 - 3100 = 54100\)
\(S(45) = \frac{2}{5} \cdot {(45)^3} - 63.{(45)^2} + 3240(45) - 3100 = 36450 - 127575 + 145800 - 3100 = 51875\)
Nhận thấy giá trị lớn nhất là 54100 tại t=60.
Vậy ngày có lượng gạo xuất khẩu cao nhất là ngày thứ 60.
Chọn A.
Bài tập 1.47 trang 49 SGK Toán 12 tập 1 là một bài toán quan trọng trong chương trình học môn Toán lớp 12, tập trung vào việc ứng dụng đạo hàm để giải quyết các bài toán liên quan đến sự biến thiên của hàm số. Để giải quyết bài toán này một cách hiệu quả, học sinh cần nắm vững các kiến thức cơ bản về đạo hàm, bao gồm cách tính đạo hàm, các quy tắc đạo hàm, và ứng dụng của đạo hàm trong việc tìm cực trị, khoảng đơn điệu của hàm số.
Bài tập yêu cầu học sinh xét hàm số f(x) = x3 - 3x2 + 2 và thực hiện các yêu cầu sau:
Để tính đạo hàm f'(x), ta áp dụng quy tắc đạo hàm của hàm đa thức:
f'(x) = 3x2 - 6x
Để tìm các điểm cực trị, ta giải phương trình f'(x) = 0:
3x2 - 6x = 0
3x(x - 2) = 0
Vậy, x = 0 hoặc x = 2
Để xác định xem các điểm này là điểm cực đại hay cực tiểu, ta xét dấu của đạo hàm cấp hai f''(x):
f''(x) = 6x - 6
Tại x = 0, f''(0) = -6 < 0, vậy x = 0 là điểm cực đại.
Tại x = 2, f''(2) = 6 > 0, vậy x = 2 là điểm cực tiểu.
Giá trị của hàm số tại các điểm cực trị là:
f(0) = 2
f(2) = 8 - 12 + 2 = -2
Vậy, hàm số có điểm cực đại là (0, 2) và điểm cực tiểu là (2, -2).
Ta xét dấu của đạo hàm f'(x):
Dựa vào các thông tin đã tìm được, ta có thể vẽ đồ thị hàm số f(x) = x3 - 3x2 + 2. Đồ thị hàm số có điểm cực đại (0, 2), điểm cực tiểu (2, -2), đồng biến trên khoảng (-∞, 0) và (2, +∞), nghịch biến trên khoảng (0, 2).
Bài tập 1.47 trang 49 SGK Toán 12 tập 1 đã được giải quyết một cách chi tiết và đầy đủ. Hy vọng rằng, thông qua bài giải này, các em học sinh đã nắm vững kiến thức và kỹ năng giải toán liên quan đến đạo hàm và ứng dụng của đạo hàm trong việc xét sự biến thiên của hàm số. Việc luyện tập thường xuyên với các bài tập tương tự sẽ giúp các em củng cố kiến thức và nâng cao khả năng giải toán.
Để củng cố kiến thức, các em có thể tham khảo thêm các bài tập tương tự trong SGK Toán 12 tập 1 và các tài liệu ôn tập khác. Ngoài ra, các em cũng có thể tìm kiếm các bài giảng trực tuyến hoặc tham gia các khóa học luyện thi THPT Quốc gia để được hướng dẫn và giải đáp thắc mắc.
Giaitoan.edu.vn luôn đồng hành cùng các em trên con đường chinh phục kiến thức. Chúc các em học tập tốt!