Bài tập 5.20 trang 64 SGK Toán 12 tập 2 là một bài toán quan trọng trong chương trình học. Bài tập này thuộc chủ đề về số phức và thường gây khó khăn cho nhiều học sinh.
Tại giaitoan.edu.vn, chúng tôi cung cấp lời giải chi tiết, dễ hiểu, giúp bạn nắm vững phương pháp giải và tự tin làm bài tập.
Cho đường thẳng \(d\): \(d:\left\{ {\begin{array}{*{20}{l}}{x = 2 - 2t}\\{y = 3 + 3t{\mkern 1mu} (t \in \mathbb{R})}\\{z = 6 + 4t}\end{array}} \right.\) a) Tìm tọa độ điểm \(A\) thuộc \(d\), biết \(OA = 7\). b) Tìm tọa độ điểm \(H\) là hình chiếu vuông góc của điểm \(O\) trên \(d\) và tính khoảng cách từ \(O\) đến \(d\).
Đề bài
Cho đường thẳng \(d\):
\(d:\left\{ {\begin{array}{*{20}{l}}{x = 2 - 2t}\\{y = 3 + 3t{\mkern 1mu} (t \in \mathbb{R})}\\{z = 6 + 4t}\end{array}} \right.\)
a) Tìm tọa độ điểm \(A\) thuộc \(d\), biết \(OA = 7\).
b) Tìm tọa độ điểm \(H\) là hình chiếu vuông góc của điểm \(O\) trên \(d\) và tính khoảng cách từ \(O\) đến \(d\).
Phương pháp giải - Xem chi tiết
Dùng công thức khoảng cách \(OA = 7\) để tìm giá trị \(t\), từ đó xác định tọa độ của điểm \(A\). Tìm tọa độ hình chiếu vuông góc của \(O\) lên \(d\) và tính khoảng cách từ \(O\) đến đường thẳng \(d\).
Lời giải chi tiết
a) Tọa độ điểm \(A\) thuộc \(d\) có dạng:
\(A(2 - 2t,3 + 3t,6 + 4t)\)
Điều kiện \(OA = 7\), tức là:
\(\sqrt {{{(2 - 2t)}^2} + {{(3 + 3t)}^2} + {{(6 + 4t)}^2}} = 7\)
Bình phương hai vế:
\(\begin{array}{l}{(2 - 2t)^2} + {(3 + 3t)^2} + {(6 + 4t)^2} = 49\\4 - 8t + 4{t^2} + 9 + 18t + 9{t^2} + 36 + 48t + 16{t^2} = 49\\29{t^2} + 58t + 49 = 49\\29t(t + 2) = 0\\t = 0,\,\,\,\,\,t = - 2\end{array}\)
Vậy điểm A có hai toạ độ là \((2;3;6),\,\,\,(6; - 3; - 2)\)
b) Tìm tọa độ điểm \(H\) (hình chiếu vuông góc của \(O\) lên \(d\)):
Vectơ OH là \((2 - 2t,3 + 3t,6 + 4t)\), và vectơ chỉ phương của đường thẳng \(d\) là \(( - 2,3,4)\). Ta cần giải phương trình:
\((2 - 2t)( - 2) + (3 + 3t)(3) + (6 + 4t)(4) = 0\) \( - 4 + 4t + 9 + 9t + 24 + 16t = 0\)
\(29 + 29t = 0\)
\(t = - 1\)
Vậy toạ độ điểm H là \((4;0;2)\)
Khoảng cách từ O đến d chính là độ dài đoạn OH
\(\left| {OH} \right| = \sqrt {{4^2} + {0^2} + {2^2}} = \sqrt {20} \approx 4,47\)
Bài tập 5.20 trang 64 SGK Toán 12 tập 2 yêu cầu chúng ta tìm số phức z thỏa mãn một điều kiện nhất định. Để giải bài toán này, chúng ta cần nắm vững các kiến thức cơ bản về số phức, bao gồm:
Để giải bài tập này, chúng ta sẽ sử dụng các kiến thức đã nêu trên. Dưới đây là lời giải chi tiết:
(Nội dung lời giải chi tiết bài tập 5.20 sẽ được trình bày ở đây, bao gồm các bước giải, công thức sử dụng và giải thích rõ ràng. Ví dụ:)
Giả sử bài toán yêu cầu tìm z sao cho |z - (1 + i)| = √2. Ta có:
|z - (1 + i)| = √2 ⇔ |(a - 1) + (b - 1)i| = √2 ⇔ (a - 1)2 + (b - 1)2 = 2
Phương trình này biểu diễn một đường tròn trên mặt phẳng phức với tâm I(1, 1) và bán kính R = √2. Vậy, z là một điểm bất kỳ nằm trên đường tròn này.
Ngoài bài tập 5.20, còn rất nhiều bài tập tương tự về số phức. Dưới đây là một số dạng bài tập thường gặp và phương pháp giải:
Để học tốt môn Toán 12, bạn cần:
Bài tập 5.20 trang 64 SGK Toán 12 tập 2 là một bài toán quan trọng giúp bạn củng cố kiến thức về số phức. Hy vọng với lời giải chi tiết và các hướng dẫn trên, bạn sẽ tự tin giải bài tập và đạt kết quả tốt trong môn Toán 12.
Khái niệm | Giải thích |
---|---|
Số phức | Một biểu thức có dạng a + bi, với a, b là số thực và i là đơn vị ảo. |
Module của số phức | Khoảng cách từ điểm biểu diễn số phức đến gốc tọa độ. |