Logo Header
  1. Môn Toán
  2. Giải bài tập 1.16 trang 22 SGK Toán 12 tập 1 - Cùng khám phá

Giải bài tập 1.16 trang 22 SGK Toán 12 tập 1 - Cùng khám phá

Giải bài tập 1.16 trang 22 SGK Toán 12 tập 1

Chào mừng các em học sinh đến với bài giải bài tập 1.16 trang 22 SGK Toán 12 tập 1 tại giaitoan.edu.vn. Bài tập này thuộc chương trình học môn Toán lớp 12, tập trung vào việc rèn luyện kỹ năng giải các bài toán về đạo hàm và ứng dụng của đạo hàm.

Chúng tôi cung cấp lời giải chi tiết, dễ hiểu, giúp các em nắm vững kiến thức và phương pháp giải bài tập một cách hiệu quả.

Tìm các đường tiệm cận của mỗi hàm số a) \(y = {x^3} - 2x + x - 9\) b) \(y = \frac{{x - 5}}{{4x + 2}}\) c) \(y = \frac{{{x^2} - 3x + 4}}{{2x + 1}}\) d) \(y = 2x - 1 + \frac{2}{{x + 1}}\)

Đề bài

Tìm các đường tiệm cận của mỗi hàm số

a) \(y = {x^3} - 2x + x - 9\)

b) \(y = \frac{{x - 5}}{{4x + 2}}\)

c) \(y = \frac{{{x^2} - 3x + 4}}{{2x + 1}}\)

d) \(y = 2x - 1 + \frac{2}{{x + 1}}\)

Phương pháp giải - Xem chi tiếtGiải bài tập 1.16 trang 22 SGK Toán 12 tập 1 - Cùng khám phá 1

Xét giới hạn các hàm số và áp dụng ghi chú: hàm số \(y = \frac{{a{x^2} + bx + c}}{{mx + n}}\) (\(a \ne 0,m \ne 0\) đa thức tử không chia hết cho đa thức mẫu) luôn được viết dưới dạng \(y = px + q + \frac{r}{{mx + n}}\)\((p,q,r \in R)\). Khi đó đồ thị hàm số có đường tiệm cận đứng \(x = - \frac{n}{m}\)là và đường tiệm cận xiên là\(y = px + q\).

Lời giải chi tiết

a) \(y = {x^3} - 2x + x - 9\)

Hàm số xác định trên R nên hàm số không có tiệm cận đứng.

Lại có vì y là hàm đa thức nên không có tiệm cận ngang.

b) \(y = \frac{{x - 5}}{{4x + 2}}\)

Ta có \(\mathop {\lim }\limits_{x \to + \infty } \frac{{x - 5}}{{4x + 2}} = \frac{1}{4},\mathop {\lim }\limits_{x \to - \infty } \frac{{x - 5}}{{4x + 2}} = \frac{1}{4}.\)

Suy ra y =\(\;\frac{1}{4}\) là đường tiệm cận ngang của hàm số.

Ta có \(\mathop {\lim }\limits_{x \to {{\left( {\frac{{ - 1}}{2}} \right)}^ + }} \frac{{x - 5}}{{4x + 2}} = - \infty ,\mathop {\lim }\limits_{x \to {{\left( {\frac{{ - 1}}{2}} \right)}^ - }} \frac{{x - 5}}{{4x + 2}} = + \infty \).

Suy ra \(x = \frac{{ - 1}}{2}\) đường tiệm cận đứng của hàm số.

c) \(y = \frac{{{x^2} - 3x + 4}}{{2x + 1}}\)

Ta có: \(\mathop {\lim }\limits_{x \to + \infty } \frac{{{x^2} - 3x + 4}}{{2x + 1}} = + \infty ,\mathop {\lim }\limits_{x \to - \infty } \frac{{{x^2} - 3x + 4}}{{2x + 1}} = - \infty \).

Suy ra hàm số không có đường tiệm cận ngang.

Ta có: \(\mathop {\lim }\limits_{x \to {{\left( {\frac{{ - 1}}{2}} \right)}^ + }} \frac{{{x^2} - 3x + 4}}{{2x + 1}} = + \infty ,\mathop {\lim }\limits_{x \to {{\left( {\frac{{ - 1}}{2}} \right)}^ - }} \frac{{{x^2} - 3x + 4}}{{2x + 1}} = - \infty \)

Suy ra \(x = \frac{{ - 1}}{2}\) là tiệm cận đứng của đồ thị.

Ta có: \(\frac{{{x^2} - 3x + 4}}{{2x + 1}} = \frac{x}{2} - \frac{7}{4} + \frac{{23}}{{4(2x + 1)}}\)

\( \Rightarrow \mathop {\lim }\limits_{x \to + \infty } \left( {y - \frac{x}{2} + \frac{7}{4}} \right) = \mathop {\lim }\limits_{x \to + \infty } \frac{{23}}{{4(2x + 1)}} = 0,\mathop {\lim }\limits_{x \to - \infty } \left( {y - \frac{x}{2} + \frac{7}{4}} \right) = \mathop {\lim }\limits_{x \to - \infty } \frac{{23}}{{4(2x + 1)}} = 0.\)

Suy ra \(y = \frac{x}{2} - \frac{7}{4}\) là tiệm cận xiên của đồ thị.

d) \(y = 2x - 1 + \frac{2}{{x + 1}}\)

Ta có: \(\mathop {\lim }\limits_{x \to + \infty } y = 2x - 1 + \frac{2}{{x + 1}} = + \infty ,\mathop {\lim }\limits_{x \to - \infty } y = 2x - 1 + \frac{2}{{x + 1}} = - \infty .\)

Suy ra hàm số không có đường tiệm cận ngang.

Ta có: \(\mathop {\lim }\limits_{x \to - {1^ + }} y = 2x - 1 + \frac{2}{{x + 1}} = + \infty ,\mathop {\lim }\limits_{x \to - {1^ - }} 2x - 1 + \frac{2}{{x + 1}} = - \infty .\)

Suy ra \(x = - 1\) là tiệm cận đứng của đồ thị.

Ta có: \(\mathop {\lim }\limits_{x \to + \infty } \left( {y - 2x + 1} \right) = \mathop {\lim }\limits_{x \to + \infty } \frac{2}{{x + 1}} = 0,\mathop {\lim }\limits_{x \to + \infty } \left( {y - 2x + 1} \right) = \mathop {\lim }\limits_{x \to + \infty } \frac{2}{{x + 1}} = 0.\)

Suy ra \(y = 2x - 1\) là tiệm cận xiên của đồ thị.

Hàm số có đường tiệm cận đứng là \(x = - 1\)và đường tiệm cận xiên là \(y = 2x - 1\).

Tự tin bứt phá Kỳ thi THPT Quốc gia môn Toán! Đừng bỏ lỡ Giải bài tập 1.16 trang 22 SGK Toán 12 tập 1 - Cùng khám phá đặc sắc thuộc chuyên mục sgk toán 12 trên nền tảng tài liệu toán. Với bộ bài tập toán trung học phổ thông được biên soạn chuyên sâu, bám sát cấu trúc đề thi và chương trình Toán 12, đây chính là "chiến lược vàng" giúp các em tối ưu hóa ôn luyện. Học sinh sẽ không chỉ làm chủ mọi dạng bài thi mà còn nắm vững chiến thuật làm bài hiệu quả, sẵn sàng tự tin chinh phục điểm cao, vững bước vào đại học mơ ước nhờ phương pháp học trực quan, khoa học và hiệu quả học tập vượt trội!

Giải bài tập 1.16 trang 22 SGK Toán 12 tập 1: Phương pháp tiếp cận chi tiết

Bài tập 1.16 trang 22 SGK Toán 12 tập 1 thường liên quan đến việc tìm đạo hàm của hàm số và sử dụng đạo hàm để giải các bài toán thực tế. Để giải bài tập này một cách hiệu quả, chúng ta cần nắm vững các kiến thức cơ bản về đạo hàm, bao gồm:

  • Định nghĩa đạo hàm: Hiểu rõ khái niệm đạo hàm của một hàm số tại một điểm.
  • Các quy tắc tính đạo hàm: Nắm vững các quy tắc tính đạo hàm của tổng, hiệu, tích, thương và hàm hợp.
  • Đạo hàm của các hàm số cơ bản: Biết đạo hàm của các hàm số thường gặp như hàm số đa thức, hàm số lượng giác, hàm số mũ, hàm số logarit.
  • Ứng dụng của đạo hàm: Sử dụng đạo hàm để tìm cực trị của hàm số, khảo sát hàm số và giải các bài toán liên quan đến tối ưu hóa.

Lời giải chi tiết bài tập 1.16 trang 22 SGK Toán 12 tập 1

Để cung cấp lời giải chi tiết, chúng ta cần biết chính xác nội dung của bài tập 1.16. Tuy nhiên, dựa trên kinh nghiệm giải các bài tập tương tự, chúng ta có thể đưa ra một phương pháp tiếp cận chung:

  1. Xác định hàm số: Xác định hàm số cần tìm đạo hàm hoặc khảo sát.
  2. Tính đạo hàm: Sử dụng các quy tắc tính đạo hàm để tìm đạo hàm của hàm số.
  3. Giải phương trình đạo hàm: Giải phương trình đạo hàm bằng 0 để tìm các điểm cực trị của hàm số.
  4. Khảo sát hàm số: Dựa vào đạo hàm cấp hai để xác định tính chất của các điểm cực trị (cực đại hoặc cực tiểu).
  5. Kết luận: Đưa ra kết luận về hàm số, bao gồm khoảng đồng biến, khoảng nghịch biến, cực trị và giới hạn của hàm số.

Ví dụ minh họa

Giả sử bài tập 1.16 yêu cầu tìm đạo hàm của hàm số f(x) = x3 - 3x2 + 2x. Ta thực hiện như sau:

f'(x) = 3x2 - 6x + 2

Để tìm cực trị, ta giải phương trình f'(x) = 0:

3x2 - 6x + 2 = 0

Sử dụng công thức nghiệm của phương trình bậc hai, ta tìm được hai nghiệm x1 và x2. Sau đó, ta tính f''(x) = 6x - 6 và kiểm tra dấu của f''(x1) và f''(x2) để xác định tính chất của các điểm cực trị.

Mở rộng kiến thức và ứng dụng

Ngoài việc giải bài tập 1.16, các em có thể tìm hiểu thêm về các ứng dụng của đạo hàm trong các lĩnh vực khác nhau, chẳng hạn như:

  • Vật lý: Tính vận tốc, gia tốc và các đại lượng liên quan đến chuyển động.
  • Kinh tế: Tính chi phí biên, doanh thu biên và lợi nhuận biên.
  • Kỹ thuật: Tối ưu hóa các thiết kế và quy trình sản xuất.

Luyện tập thêm

Để củng cố kiến thức và kỹ năng giải bài tập về đạo hàm, các em nên luyện tập thêm với các bài tập tương tự trong SGK và các tài liệu tham khảo khác. Ngoài ra, các em có thể tham gia các khóa học online hoặc tìm kiếm sự giúp đỡ từ các giáo viên và bạn bè.

Tổng kết

Bài tập 1.16 trang 22 SGK Toán 12 tập 1 là một bài tập quan trọng giúp các em rèn luyện kỹ năng giải các bài toán về đạo hàm và ứng dụng của đạo hàm. Bằng cách nắm vững các kiến thức cơ bản và phương pháp giải bài tập, các em có thể tự tin giải quyết các bài toán tương tự và đạt kết quả tốt trong môn Toán.

Tài liệu, đề thi và đáp án Toán 12