Logo Header
  1. Môn Toán
  2. Lý thuyết Tích phân Toán 12 Cùng khám phá

Lý thuyết Tích phân Toán 12 Cùng khám phá

Lý thuyết Tích phân Toán 12: Nền tảng vững chắc cho kỳ thi

Chào mừng bạn đến với chuyên mục Lý thuyết Tích phân Toán 12 của giaitoan.edu.vn. Tại đây, chúng tôi cung cấp kiến thức nền tảng, các định nghĩa, tính chất và công thức quan trọng về tích phân một cách dễ hiểu và chi tiết.

Mục tiêu của chúng tôi là giúp bạn nắm vững lý thuyết, từ đó có thể áp dụng giải quyết các bài tập một cách hiệu quả và tự tin trong các kỳ thi quan trọng.

1. Khái niệm tích phân Một số bài toán dẫn đến khái niệm tích phân a) Quãng đường đi được của một vật

1. Khái niệm tích phân

Một số bài toán dẫn đến khái niệm tích phân

a) Quãng đường đi được của một vật

Xét một vật chuyển động thẳng với vận tốc v = v(t) (0 < t < T) và không đổi chiều chuyển động. Gọi F(t) là một nguyên hàm bất kỳ của v(t) trên khoảng (0;T) thì quãng đường vật đi được từ thời điểm t = a đến thời điểm t = b là L = F(b) − F(a) với 0 < a < b < T.

b) Diện tích hình thang cong

Cho hàm số f(x) liên tục trên đoạn [a;b]. Hình phẳng giới hạn bởi đồ thị hàm số y=f(x), trục hoành và hai đường thẳng x = a, x = bđược gọi là hình thang cong.

Trong trường hợp tổng quát, cho hàm số y = f(x) liên tục, không âm trên đoạn [a;b], người ta chứng minh được rằng diện tích hình thang cong giới hạn bởi đồ thị hàm số y=f(x), trục hoành và các đường thẳng x = a, x = b bằng F(b) − F(a), với F(x) là một nguyên hàm của f(x) trên đoạn [a;b].

Lý thuyết Tích phân Toán 12 Cùng khám phá 1

Ví dụ: Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số \(f(x) = {x^2} + 1\) và các đường thẳng x = -1, x = 2.

Định nghĩa tích phân

Cho hàm số f(x) liên tục trên đoạn \(\left[ {a;b} \right]\). Nếu F(x) là một nguyên hàm của hàm số f(x) trên đoạn \(\left[ {a;b} \right]\) thì hiệu số F(b) – F(a) được gọi là tích phân từ a đến b của hàm số f(x), kí hiệu là \(\int\limits_a^b {f(x)dx} \).

Ta còn dùng ký hiệu F(x) để chỉ hiệu số F(b) − F(a).

Vậy \(\int\limits_a^b {f(x)dx} = F(x)\left| {\begin{array}{*{20}{c}}b\\a\end{array}} \right. = F(b) - F(a)\).

Ta gọi \(\int\limits_a^b {} \) là dấu tích phân, a là cận dưới, b là cận trên, \(f\left( x \right)dx\) là biểu thức dưới dấu tích phân và f(x) là hàm số dưới dấu tích phân.

Ghi chú:

- Quy ước: \(\int\limits_a^0 {f(x)dx} = 0\), nếu b > a thì \(\int\limits_b^a {f(x)dx} = - \int\limits_a^b {f(x)dx} \).

- Tích phân chỉ phụ thuộc vào hàm số dưới dấu tích phân và các cận a, b mà không phụ thuộc vào biến x hay t, nghĩa là \(\int\limits_a^b {f(x)dx} = \int\limits_a^b {f(t)dt} \).

- Ý nghĩa hình học của tích phân: Nếu hàm số y = f(x) liên tục và không âm trên đoạn [a;b] thì diện tích S của hình thang cong (H) giới hạn bởi đồ thị hàm số y = f(x), trục hoành và các đường thẳng x = a, x = blà \(S = \int\limits_a^b {f(x)dx} \).

Ví dụ:

a) \(\int\limits_2^3 {3{x^2}dx} = {x^3}\left| {\begin{array}{*{20}{c}}3\\2\end{array}} \right. = {3^3} - {2^3} = 27 - 8 = 19\).

b) \(\int\limits_2^3 {{e^t}dt} = {e^t}\left| {\begin{array}{*{20}{c}}1\\0\end{array}} \right. = {e^1} - {e^0} = e - 1\).

2. Tính chất của tích phân

+ \(\int\limits_a^b {kf(x)dx = k\int\limits_a^b {f(x)dx} } \) (k là hằng số)

+ \(\int\limits_a^b {\left[ {f(x) + g(x)} \right]} dx = \int\limits_a^b {f(x)dx + \int\limits_a^b {g(x)dx} } \)

+ \(\int\limits_a^b {\left[ {f(x) - g(x)} \right]} dx = \int\limits_a^b {f(x)dx - \int\limits_a^b {g(x)dx} } \)

+ \(\int\limits_a^b {f(x)dx = \int\limits_a^c {f(x)dx + \int\limits_c^b {f(x)dx} } } \) (a < c < b)

Ví dụ:

a) Cho \(\int\limits_0^2 {\sqrt {{e^x}} dx} = 2(e - 1)\). Tính \(\int\limits_0^2 {\frac{{\sqrt {{e^x}} }}{2}dx} \).

Ta có \(\int\limits_0^2 {\frac{{\sqrt {{e^x}} }}{2}dx} = \frac{1}{2}\int\limits_0^2 {\sqrt {{e^x}} dx} = \frac{1}{2}.2(e - 1) = e - 1\).

b) Tính \(\int\limits_0^{\frac{\pi }{2}} {(3\sin x - \cos x)dx} \).

\(\int\limits_0^{\frac{\pi }{2}} {(3\sin x - \cos x)dx} = 3\int\limits_0^{\frac{\pi }{2}} {\sin xdx} - \int\limits_0^{\frac{\pi }{2}} {\cos xdx} \)

\( = ( - 3\cos x)\left| {\begin{array}{*{20}{c}}{\frac{\pi }{2}}\\0\end{array}} \right. - \sin \left| {\begin{array}{*{20}{c}}{\frac{\pi }{2}}\\0\end{array}} \right. = - 3(0 - 1) - (1 - 0) = 2\).

c) Cho các hàm số f(x), g(x) liên tục trên đoạn [1;3] và \(\int\limits_1^2 {f(x)dx} = \frac{1}{2}\), \(\int\limits_2^3 {f(x)dx} = \frac{3}{2}\), \(\int\limits_1^3 {g(x)dx} = - 1\).

Ta có:

\(\int\limits_1^3 {f(x)dx} = \int\limits_1^2 {f(x)dx} + \int\limits_2^3 {f(x)dx} = \frac{1}{2} + \frac{3}{2} = 2\).

\(\int\limits_1^3 {[2f(x) + g(x)]dx} = 2\int\limits_1^3 {f(x)dx} + \int\limits_1^3 {f(x)dx} = 2.2 - 1 = 3\).

3. Tính tích phân trong một số trường hợp đơn giản

a) \(\int\limits_1^2 {{{(2x - 3)}^2}dx} = \int\limits_1^2 {(4{x^2} - 12x + 9)dx} = 4\int\limits_1^2 {{x^2}dx} - 12\int\limits_1^2 {xdx} + \int\limits_1^2 {9dx} \)

\( = \left( {\frac{4}{3}{x^3}} \right)\left| {\begin{array}{*{20}{c}}2\\1\end{array}} \right. - \left( {6{x^2}} \right)\left| {\begin{array}{*{20}{c}}2\\1\end{array}} \right. + (9x)\left| {\begin{array}{*{20}{c}}2\\1\end{array}} \right. = \frac{1}{3}\).

b) \(\int\limits_{ - 1}^0 {{5^{2x - 1}}dx} = \frac{1}{5}\int\limits_{ - 1}^0 {{5^{2x}}dx} = \frac{1}{5}\int\limits_{ - 1}^0 {{{25}^x}dx} = \frac{{{{25}^x}}}{{5\ln 25}}\left| {\begin{array}{*{20}{c}}0\\{ - 1}\end{array}} \right. = \frac{{24}}{{125\ln 25}}\).

c) \(\int\limits_{ - \frac{\pi }{4}}^0 {(2{{\tan }^2}x + 5)dx} = \int\limits_{ - \frac{\pi }{4}}^0 {\left[ {2(1 + {{\tan }^2}x) + 3} \right]dx} = 2\int\limits_{ - \frac{\pi }{4}}^0 {\frac{1}{{{{\cos }^2}x}}dx} + \int\limits_{ - \frac{\pi }{4}}^0 {3dx} \)

\( = 2(\tan x)\left| {\begin{array}{*{20}{c}}0\\{ - \frac{\pi }{4}}\end{array} + (3x)} \right.\left| {\begin{array}{*{20}{c}}0\\{ - \frac{\pi }{4}}\end{array}} \right. = \frac{{3\pi + 8}}{4}\).

Lý thuyết Tích phân Toán 12 Cùng khám phá 2

Tự tin bứt phá Kỳ thi THPT Quốc gia môn Toán! Đừng bỏ lỡ Lý thuyết Tích phân Toán 12 Cùng khám phá đặc sắc thuộc chuyên mục sgk toán 12 trên nền tảng đề thi toán. Với bộ bài tập lý thuyết toán thpt được biên soạn chuyên sâu, bám sát cấu trúc đề thi và chương trình Toán 12, đây chính là "chiến lược vàng" giúp các em tối ưu hóa ôn luyện. Học sinh sẽ không chỉ làm chủ mọi dạng bài thi mà còn nắm vững chiến thuật làm bài hiệu quả, sẵn sàng tự tin chinh phục điểm cao, vững bước vào đại học mơ ước nhờ phương pháp học trực quan, khoa học và hiệu quả học tập vượt trội!

Lý thuyết Tích phân Toán 12: Tổng quan

Tích phân là một trong những khái niệm quan trọng nhất trong giải tích, đóng vai trò then chốt trong nhiều lĩnh vực khoa học và kỹ thuật. Trong chương trình Toán 12, tích phân được giới thiệu như một phép toán ngược của phép vi phân, cho phép tính diện tích dưới đường cong, thể tích của vật thể, và nhiều ứng dụng khác.

1. Khái niệm Nguyên hàm

Nguyên hàm của một hàm số f(x) là một hàm số F(x) sao cho đạo hàm của F(x) bằng f(x), tức là F'(x) = f(x). Nguyên hàm không duy nhất, vì nếu F(x) là một nguyên hàm của f(x) thì F(x) + C cũng là một nguyên hàm của f(x), với C là một hằng số bất kỳ.

2. Tích phân Bất định

Tích phân bất định của hàm số f(x) ký hiệu là ∫f(x)dx, là tập hợp tất cả các nguyên hàm của f(x). Công thức tính tích phân bất định của một số hàm số cơ bản:

  • ∫xndx = (xn+1)/(n+1) + C (n ≠ -1)
  • ∫(1/x)dx = ln|x| + C
  • ∫exdx = ex + C
  • ∫sin(x)dx = -cos(x) + C
  • ∫cos(x)dx = sin(x) + C

3. Tích phân Xác định

Tích phân xác định của hàm số f(x) trên đoạn [a, b] ký hiệu là ∫abf(x)dx, là một số thực biểu thị diện tích có dấu giữa đồ thị hàm số f(x), trục hoành và hai đường thẳng x = a, x = b.

Công thức tính tích phân xác định:

abf(x)dx = F(b) - F(a), trong đó F(x) là một nguyên hàm của f(x).

4. Các Tính chất của Tích phân

  • ab[f(x) + g(x)]dx = ∫abf(x)dx + ∫abg(x)dx
  • abkf(x)dx = k∫abf(x)dx (k là hằng số)
  • abf(x)dx = -∫baf(x)dx
  • aaf(x)dx = 0

5. Phương pháp Tích phân

Có nhiều phương pháp tích phân khác nhau, tùy thuộc vào dạng của hàm số cần tích phân. Một số phương pháp phổ biến:

  • Phương pháp đổi biến số: Sử dụng để đơn giản hóa tích phân bằng cách thay đổi biến số.
  • Phương pháp tích phân từng phần: Sử dụng để tích phân tích của hai hàm số. Công thức: ∫u dv = uv - ∫v du
  • Phương pháp phân tích thành phân thức đơn giản: Sử dụng để tích phân các hàm số hữu tỉ.

6. Ứng dụng của Tích phân

Tích phân có rất nhiều ứng dụng trong thực tế, bao gồm:

  • Tính diện tích: Tính diện tích của các hình phẳng giới hạn bởi đồ thị hàm số.
  • Tính thể tích: Tính thể tích của các vật thể tròn xoay.
  • Tính độ dài đường cong: Tính độ dài của một đường cong.
  • Tính công: Tính công thực hiện bởi một lực.

7. Bài tập Vận dụng

Để hiểu rõ hơn về lý thuyết tích phân, bạn nên thực hành giải nhiều bài tập khác nhau. Giaitoan.edu.vn cung cấp một kho bài tập phong phú với các mức độ khó khác nhau, kèm theo lời giải chi tiết để bạn tham khảo.

Kết luận

Lý thuyết tích phân Toán 12 là một phần quan trọng của chương trình học. Việc nắm vững kiến thức này sẽ giúp bạn giải quyết các bài toán một cách hiệu quả và tự tin hơn trong các kỳ thi. Hãy dành thời gian ôn tập và luyện tập thường xuyên để đạt kết quả tốt nhất.

Tài liệu, đề thi và đáp án Toán 12