Chào mừng các em học sinh đến với bài giải chi tiết bài tập 5.31 trang 77 SGK Toán 12 tập 2 tại giaitoan.edu.vn. Bài tập này thuộc chương trình học Toán 12, tập trung vào việc vận dụng kiến thức về đạo hàm để giải quyết các bài toán thực tế.
Chúng tôi cung cấp lời giải chi tiết, dễ hiểu, giúp các em nắm vững phương pháp giải và tự tin làm bài tập.
Tìm tâm và bán kính của các mặt cầu có phương trình sau đây: a) \({x^2} + {(y - 3)^2} + {(z + 2)^2} = 1\) b) \({(x - 2)^2} + {(y - 3)^2} + {z^2} = 4\) c) \({x^2} + {y^2} + {z^2} - 8x - 2y + 1 = 0\) d) \(3{x^2} + 3{y^2} + 3{z^2} - 6x + 8y + 15z - 3 = 0\)
Đề bài
Tìm tâm và bán kính của các mặt cầu có phương trình sau đây:
a) \({x^2} + {(y - 3)^2} + {(z + 2)^2} = 1\)
b) \({(x - 2)^2} + {(y - 3)^2} + {z^2} = 4\)
c) \({x^2} + {y^2} + {z^2} - 8x - 2y + 1 = 0\)
d) \(3{x^2} + 3{y^2} + 3{z^2} - 6x + 8y + 15z - 3 = 0\)
Phương pháp giải - Xem chi tiết
Phương trình của mặt cầu có tâm \(I(a,b,c)\) và bán kính \(R\) có dạng:
\({(x - a)^2} + {(y - b)^2} + {(z - c)^2} = {R^2}\)
- Nếu phương trình đã ở dạng chuẩn, xác định \(a\), \(b\), \(c\) và \(R\) từ phương trình.
- Nếu phương trình chưa chuẩn, đưa về dạng chuẩn bằng cách hoàn phương cho các biến \(x\), \(y\), \(z\).
Lời giải chi tiết
a) \({x^2} + {(y - 3)^2} + {(z + 2)^2} = 1\)
Từ phương trình, ta có:
- Tâm \(I(0,3, - 2)\)
- Bán kính \(R = \sqrt 1 = 1\)
b) \({(x - 2)^2} + {(y - 3)^2} + {z^2} = 4\)
Từ phương trình, ta có:
- Tâm \(I(2,3,0)\)
- Bán kính \(R = \sqrt 4 = 2\)
c) \({x^2} + {y^2} + {z^2} - 8x - 2y + 1 = 0\)
Ta có: \(({x^2} - 8x) + ({y^2} - 2y) + {z^2} = - 1\)
- \(x\): \({x^2} - 8x = {(x - 4)^2} - 16\)
- \(y\): \({y^2} - 2y = {(y - 1)^2} - 1\)
- Phương trình trở thành:
\({(x - 4)^2} + {(y - 1)^2} + {z^2} = 16 + 1 - 1 = 16\)
- Tâm \(I(4,1,0)\)
- Bán kính \(R = \sqrt {16} = 4\)
d) \(3{x^2} + 3{y^2} + 3{z^2} - 6x + 8y + 15z - 3 = 0\)
Chia cả hai vế cho 3: \({x^2} + {y^2} + {z^2} - 2x + \frac{8}{3}y + 5z = 1\)
- \(x\): \({x^2} - 2x = {(x - 1)^2} - 1\)
-\(y\): \({y^2} + \frac{8}{3}y = {\left( {y + \frac{4}{3}} \right)^2} - \frac{{16}}{9}\)
- \(z\): \({z^2} + 5z = {\left( {z + \frac{5}{2}} \right)^2} - \frac{{25}}{4}\)
- Phương trình trở thành:
\({(x - 1)^2} + {\left( {y + \frac{4}{3}} \right)^2} + {\left( {z + \frac{5}{2}} \right)^2} = 1 + 1 + \frac{{16}}{9} + \frac{{25}}{4} = \frac{{79}}{{36}}\)
- Tâm \(I\left( {1, - \frac{4}{3}, - \frac{5}{2}} \right)\)
- Bán kính \(R = \sqrt {\frac{{79}}{{36}}} = \frac{{\sqrt {79} }}{6}\)
Bài tập 5.31 trang 77 SGK Toán 12 tập 2 là một bài toán điển hình về ứng dụng của đạo hàm để tìm cực trị của hàm số. Để giải bài tập này, học sinh cần nắm vững các kiến thức cơ bản về đạo hàm, điều kiện cần và đủ để hàm số đạt cực trị, cũng như các phương pháp tìm cực trị của hàm số.
Đề bài yêu cầu tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số trên một khoảng cho trước. Để làm được điều này, chúng ta cần thực hiện các bước sau:
Giả sử hàm số cần xét là f(x) = x^3 - 3x^2 + 2 trên khoảng [-1; 3].
Ngoài bài tập 5.31, còn rất nhiều bài tập tương tự về ứng dụng của đạo hàm để tìm cực trị của hàm số. Các bài tập này thường yêu cầu học sinh:
Để giải các bài tập này, học sinh cần nắm vững các kiến thức về đạo hàm, điều kiện cần và đủ để hàm số đạt cực trị, cũng như các phương pháp tìm cực trị của hàm số. Ngoài ra, học sinh cũng cần rèn luyện kỹ năng giải toán và tư duy logic để có thể giải quyết các bài toán một cách hiệu quả.
Khi giải các bài tập về đạo hàm và ứng dụng, học sinh cần lưu ý một số điểm sau:
Hy vọng bài giải chi tiết bài tập 5.31 trang 77 SGK Toán 12 tập 2 này sẽ giúp các em hiểu rõ hơn về ứng dụng của đạo hàm để giải quyết các bài toán thực tế. Chúc các em học tập tốt!