Chào mừng các em học sinh đến với bài giải chi tiết bài tập 1.42 trang 48 SGK Toán 12 tập 1. Bài tập này thuộc chương trình học Toán 12 tập 1, tập trung vào việc vận dụng kiến thức về đạo hàm để giải quyết các bài toán thực tế.
Giaitoan.edu.vn cung cấp lời giải chi tiết, dễ hiểu, giúp các em nắm vững kiến thức và kỹ năng giải bài tập một cách hiệu quả.
Cho hàm số \(y = \frac{{2x - 1}}{{x + 2}}\). Mệnh đề nào sau đây đúng? A. Hàm số đồng biến trên \(( - \infty ; - 2) \cup ( - 2; + \infty )\). B. Hàm số đồng biến trên \(( - \infty ;0)\). C. Hàm số đồng biến trên \(\mathbb{R}\). D. Hàm số đồng biến trên các khoảng \(( - \infty ; - 2)\) và \(( - 2; + \infty )\).
Đề bài
Cho hàm số \(y = \frac{{2x - 1}}{{x + 2}}\). Mệnh đề nào sau đây đúng?
A. Hàm số đồng biến trên \(( - \infty ; - 2) \cup ( - 2; + \infty )\).
B. Hàm số đồng biến trên \(( - \infty ;0)\).
C. Hàm số đồng biến trên \(\mathbb{R}\).
D. Hàm số đồng biến trên các khoảng \(( - \infty ; - 2)\) và \(( - 2; + \infty )\).
Phương pháp giải - Xem chi tiết
- Tìm đạo hàm của hàm số
- Xét dấu của đạo hàm để xác định chiều biến thiên của hàm số.
Lời giải chi tiết
Có thể loại đáp án C vì tập xác định của hàm số là \(D = R\backslash \{ - 2\} \) nên không thể đồng biến trên R.
Đạo hàm của hàm số: \(y' = \frac{3}{{{{(x + 2)}^2}}} > 0\forall x \in D\).
Dấu của y′ cho thấy rằng hàm số luôn đồng biến trên các khoảng mà nó xác định, tức là trên các khoảng (−∞,−2) và (−2,∞).
Nhìn qua có thể thấy đáp án A và đáp D đều đúng nhưng cách diễn đạt của đáp án A là không hợp lý → Chọn D.
Bài tập 1.42 trang 48 SGK Toán 12 tập 1 thường liên quan đến việc tìm đạo hàm của hàm số và sử dụng đạo hàm để giải các bài toán liên quan đến cực trị, khoảng đơn điệu, hoặc các bài toán ứng dụng thực tế. Để giải bài tập này một cách hiệu quả, chúng ta cần nắm vững các kiến thức cơ bản về đạo hàm, bao gồm:
Lời giải chi tiết bài tập 1.42 trang 48 SGK Toán 12 tập 1:
Để giải bài tập này, chúng ta sẽ thực hiện các bước sau:
Ví dụ minh họa:
Giả sử bài tập 1.42 yêu cầu tìm đạo hàm của hàm số f(x) = x3 - 3x2 + 2x. Chúng ta sẽ thực hiện như sau:
Các bài tập tương tự:
Để củng cố kiến thức và kỹ năng giải bài tập về đạo hàm, các em có thể tham khảo các bài tập tương tự sau:
Lưu ý khi giải bài tập về đạo hàm:
Tài liệu tham khảo:
Hy vọng với bài giải chi tiết và các lưu ý trên, các em sẽ tự tin hơn khi giải bài tập 1.42 trang 48 SGK Toán 12 tập 1 và các bài tập tương tự. Chúc các em học tập tốt!