Chào mừng các em học sinh đến với bài giải bài tập 1.22 trang 34 SGK Toán 12 tập 1 tại giaitoan.edu.vn. Bài tập này thuộc chương trình học Toán 12 tập 1, tập trung vào việc ôn tập chương 1: Hàm số bậc nhất và hàm số bậc hai.
Chúng tôi cung cấp lời giải chi tiết, dễ hiểu, giúp các em nắm vững kiến thức và kỹ năng giải toán.
Khảo sát sự biến thiên và vẽ đồ thị của các hàm số sau đây: a) (y = frac{{{x^2} + 2x + 2}}{{x + 1}}) b) ({rm{y}} = frac{{{x^2} - 2x - 3}}{{x - 2}}) c)(y = - x + 1 + frac{1}{{x + 1}}) d)(y = frac{{2{x^2} - x + 1}}{{1 - x}})
Đề bài
Khảo sát sự biến thiên và vẽ đồ thị của các hàm số sau đây:
a) \(y = \frac{{{x^2} + 2x + 2}}{{x + 1}}\)
b) \({\rm{y}} = \frac{{{x^2} - 2x - 3}}{{x - 2}}\)
c)\(y = - x + 1 + \frac{1}{{x + 1}}\)
d)\(y = \frac{{2{x^2} - x + 1}}{{1 - x}}\)
Phương pháp giải - Xem chi tiết
- Tìm tập xác định của hàm số
- Xét sự biến thiên của hàm số
- Vẽ đồ thị hàm số
Lời giải chi tiết
a)
- Tập xác định: D = R \ {-1}.
- Sự biến thiên:
Giới hạn:
\(\mathop {\lim }\limits_{x \to - {1^ + }} y = \mathop {\lim }\limits_{x \to - {1^ + }} \left( {\frac{{{x^2} + 2x + 2}}{{x + 1}}} \right) = \mathop {\lim }\limits_{x \to - {1^ + }} \left( {\frac{{{{(x + 1)}^2} + 1}}{{x + 1}}} \right) = \mathop {\lim }\limits_{x \to - {1^ + }} \left[ {x + 1 + \frac{1}{{x + 1}}} \right] = \infty \)
\[\mathop {\lim }\limits_{x \to - {1^ - }} y = \mathop {\lim }\limits_{x \to - {1^ - }} \left( {\frac{{{x^2} + 2x + 2}}{{x + 1}}} \right) = \mathop {\lim }\limits_{x \to - {1^ - }} \left[ {x + 1 + \frac{1}{{x + 1}}} \right] = \infty \]
Suy ra x = -1 là tiệm cận đứng của hàm số
\(\mathop {\lim }\limits_{x \to \infty } y = \mathop {\lim }\limits_{x \to \infty } \left( {\frac{{{x^2} + 2x + 2}}{{x + 1}}} \right) = \mathop {\lim }\limits_{x \to \infty } (x + 1) + 0 = \infty \)
\(\mathop {\lim }\limits_{x \to - \infty } y = \mathop {\lim }\limits_{x \to - \infty } \left( {\frac{{{x^2} + 2x + 2}}{{x + 1}}} \right) = \mathop {\lim }\limits_{x \to - \infty } (x + 1) + 0 = - \infty \)
Suy ra hàm số không có tiệm cận ngang
\(\frac{{{x^2} + 2x + 2}}{{x + 1}} = x + 1 + \frac{1}{{x + 1}}\)
Khi \(x \to \pm \infty ,\frac{1}{{x + 1}} \to 0\) nên \(y = x + 1\) là tiệm cận xiên của hàm số
Ta có: \({y^\prime } = \frac{{(2x + 2)(x + 1) - \left( {{x^2} + 2x + 2} \right)}}{{{{(x + 1)}^2}}} = \frac{{{x^2} + 2x}}{{{{(x + 1)}^2}}}\)
\({y^\prime } = 0 \leftrightarrow {x^2} + 2x \leftrightarrow x(x + 2) = 0 \leftrightarrow x = 0,{\rm{ }}x = - 2\)
Bảng biến thiên:
Chiều biến thiên: Hàm số đồng biến trên các khoảng (−∞,-2) và (-1,0), đồng biến trên khoảng (-2,-1) và (-1,0).
Cực trị: Hàm số đạt cực tiểu tại \(x = 0,{y_{CT}} = 2\)
Hàm số đạt cực đại tại \(x = - 2,{y_{CD}} = - 2\)
- Vẽ đồ thị:
Tiệm cận đứng \({\rm{x}} = - 1\), tiệm cận xiên \(y = x + 1\)
Giao điểm với trục Oy là \((0,2)\)
b)
- Tập xác định: D = R \ {2}.
- Sự biến thiên:
Giới hạn:
\(\mathop {\lim }\limits_{x \to 2 + } y = \mathop {\lim }\limits_{x \to 2 + } \left( {\frac{{{x^2} - 2x - 3}}{{x - 2}}} \right) = \mathop {\lim }\limits_{x \to {2^ + }} \left( {\frac{{(x - 3)(x + 1)}}{{x - 2}}} \right) = - \infty \)
\(\mathop {\lim }\limits_{x \to {2^ - }} y = \mathop {\lim }\limits_{x \to {2^ - }} \left( {\frac{{{x^2} - 2x - 3}}{{x - 2}}} \right) = \mathop {\lim }\limits_{x \to {2^ - }} \left( {\frac{{(x - 3)(x + 1)}}{{x - 2}}} \right) = \infty \)
Suy ra x = 2 là tiệm cận đứng của hàm số
\(\mathop {\lim }\limits_{x \to \infty } y = \mathop {\lim }\limits_{x \to \infty } \left( {\frac{{{x^2} - 2x - 3}}{{x - 2}}} \right) = \mathop {\lim }\limits_{x \to \infty } \left( {\frac{{(x - 3)(x + 1)}}{{x - 2}}} \right) = \infty \)
\(\mathop {\lim }\limits_{x \to - \infty } y = \mathop {\lim }\limits_{x \to - \infty } \left( {\frac{{{x^2} - 2x - 3}}{{x - 2}}} \right) = \mathop {\lim }\limits_{x \to - \infty } \left( {\frac{{(x - 3)(x + 1)}}{{x - 2}}} \right) = - \infty \)
Suy ra hàm số không có tiệm cận ngang
\(\frac{{{x^2} - 2x - 3}}{{x - 2}} = x + \frac{{ - 3}}{{x - 2}}\)
Khi \(x \to \pm \infty ,\frac{{ - 3}}{{x - 2}} \to 0\) nên \(y = x\) là tiệm cận xiên của hàm số
Ta có: \({y^\prime } = \frac{{(2x - 2)(x - 2) - \left( {{x^2} - 2x - 3} \right)}}{{{{(x - 2)}^2}}} = \frac{{{x^2} - 4x + 7}}{{{{(x - 2)}^2}}} > 0\forall x \in D\)
Vậy hàm số đồng biến trên tập xác định
Bảng biến thiên:
Chiều biến thiên: Hàm số đồng biến trên khoảng (-\(\infty ,2\)) và (2,\(\infty \)).
Cực trị: Hàm số không có cực trị
- Vẽ đồ thị:
Tiệm cận đứng x = 2, tiệm cận xiên y = x.
Giao điểm với trục Oy là (0,\(\frac{3}{2}\))
Giao điểm với trục Ox là (-1,0) và (3,0)
c)
- Tập xác định: D = R \ {-1}.
- Sự biến thiên:
Giới hạn:
\(\mathop {\lim }\limits_{x \to - {1^ + }} y = \mathop {\lim }\limits_{x \to - {1^ + }} \left( { - x - 1 + \frac{1}{{x + 1}}} \right) = \infty \)
\(\mathop {\lim }\limits_{x \to - {1^ - }} y = \mathop {\lim }\limits_{x \to - {1^ - }} \left( { - x - 1 + \frac{1}{{x + 1}}} \right) = - \infty \)
Suy ra x = -1 là tiệm cận đứng của hàm số
\(\mathop {\lim }\limits_{x \to \infty } y = \mathop {\lim }\limits_{x \to \infty } \left( { - x - 1 + \frac{1}{{x + 1}}} \right) = - \infty \)
\(\mathop {\lim }\limits_{x \to - \infty } y = \mathop {\lim }\limits_{x \to - \infty } \left( { - x - 1 + \frac{1}{{x + 1}}} \right) = \infty \)
Suy ra hàm số không có tiệm cận ngang
Khi \(x \to \pm \infty ,\frac{1}{{x + 1}} \to 0\) nên \(y = - x - 1\) là tiệm cận xiên của hàm số
Ta có: \({y^\prime } = - 1 - \frac{1}{{{{(x + 1)}^2}}} < 0\forall x \in D\)
Vậy hàm số nghịch biến trên tập xác định
Bảng biến thiên:
Chiều biến thiên: Hàm số nghịch biến trên khoảng (-\(\infty \),-1).và (-1,\(\infty \)).
Cực trị: Hàm số không có cực trị
- Vẽ đồ thị:
Tiệm cận đứng x = -1, tiệm cận xiên y =- x-1.
Đi qua gốc toạ độ O(0,0) và giao với trục hoành tại điểm (-2,0)
d)
- Tập xác định: D = R \ {1}.
- Sự biến thiên:
Giới hạn:
\(\mathop {\lim }\limits_{x \to {1^ + }} y = \mathop {\lim }\limits_{x \to {1^ + }} \left( {\frac{{2{x^2} - x + 1}}{{1 - x}}} \right) = \mathop {\lim }\limits_{x \to {1^ + }} \left( {\frac{{(2x + 1)(x - 1) + 2}}{{1 - x}}} \right) = \mathop {\lim }\limits_{x \to {1^ + }} \left( { - 2x - 1 + \frac{2}{{1 - x}}} \right) = - \infty \)
\(\mathop {\lim }\limits_{x \to {1^ - }} y = \mathop {\lim }\limits_{x \to {1^ - }} \left( {\frac{{2{x^2} - x + 1}}{{1 - x}}} \right) = \infty \)
Suy ra x = -1 là tiệm cận đứng của hàm số
\(\mathop {\lim }\limits_{x \to \infty } y = \mathop {\lim }\limits_{x \to \infty } \left( {\frac{{2{x^2} - x + 1}}{{1 - x}}} \right) = - \infty \)
\(\mathop {\lim }\limits_{x \to - \infty } y = \mathop {\lim }\limits_{x \to - \infty } \left( {\frac{{2{x^2} - x + 1}}{{1 - x}}} \right) = \infty \)
Suy ra hàm số không có tiệm cận ngang
Khi \(x \to \pm \infty ,\frac{2}{{1 - x}} \to 0\) nên \(y = - 2x - 1\) là tiệm cận xiên của hàm số
Ta có: \({y^\prime } = \frac{{(4x - 1)(1 - x) + (2{x^2} - x + 1)}}{{{{(1 - x)}^2}}} = \frac{{ - 2{x^2} + 4x}}{{{{(1 - x)}^2}}}\)
\(y' = 0 \Leftrightarrow - 2{x^2} + 4x = 0 \Leftrightarrow x = 0,x = 2\)
Bảng biến thiên:
Chiều biến thiên: Hàm số nghịch biến trên khoảng (-\(\infty \),0) và (2,\(\infty \)), đồng biến trên khoảng (0,1) và (1,2).
Cực trị: Hàm số đạt cực tiểu tại \(x = 0,{y_{CT}} = 1\)
Hàm số đạt cực đại tại \(x = 2,{y_{CD}} = - 7\)
- Vẽ đồ thị:
Tiệm cận đứng x = 1, tiệm cận xiên y =-2x-1.
Giao điểm với trục Oy là (0,1)
Bài tập 1.22 trang 34 SGK Toán 12 tập 1 yêu cầu học sinh vận dụng kiến thức về hàm số bậc nhất và hàm số bậc hai để giải quyết các bài toán thực tế. Bài tập này thường liên quan đến việc xác định hàm số, tìm tập xác định, tập giá trị, điểm thuộc đồ thị hàm số, và giải các phương trình, bất phương trình liên quan đến hàm số.
Để giải bài tập 1.22 trang 34 SGK Toán 12 tập 1 một cách hiệu quả, học sinh cần:
(Ở đây sẽ là lời giải chi tiết cho bài tập 1.22, bao gồm các bước giải, giải thích rõ ràng và ví dụ minh họa. Lời giải sẽ được trình bày chi tiết, dễ hiểu, phù hợp với trình độ của học sinh lớp 12.)
Để giúp học sinh hiểu rõ hơn về cách giải bài tập 1.22 trang 34 SGK Toán 12 tập 1, chúng tôi xin đưa ra một số ví dụ minh họa và bài tập tương tự:
Để giải quyết bài tập 1.22 trang 34 SGK Toán 12 tập 1 và các bài tập tương tự, học sinh cần nắm vững các kiến thức sau:
Để giải bài tập 1.22 trang 34 SGK Toán 12 tập 1 một cách nhanh chóng và hiệu quả, học sinh có thể áp dụng một số mẹo sau:
Để nâng cao kiến thức và kỹ năng giải toán, học sinh có thể tham khảo các tài liệu sau:
Bài tập 1.22 trang 34 SGK Toán 12 tập 1 là một bài tập quan trọng giúp học sinh củng cố kiến thức về hàm số bậc nhất và hàm số bậc hai. Hy vọng với lời giải chi tiết và các kiến thức liên quan được cung cấp trong bài viết này, các em học sinh sẽ tự tin hơn trong việc giải quyết các bài toán tương tự.