Logo Header
  1. Môn Toán
  2. Giải bài tập 1.22 trang 34 SGK Toán 12 tập 1 - Cùng khám phá

Giải bài tập 1.22 trang 34 SGK Toán 12 tập 1 - Cùng khám phá

Giải bài tập 1.22 trang 34 SGK Toán 12 tập 1

Chào mừng các em học sinh đến với bài giải bài tập 1.22 trang 34 SGK Toán 12 tập 1 tại giaitoan.edu.vn. Bài tập này thuộc chương trình học Toán 12 tập 1, tập trung vào việc ôn tập chương 1: Hàm số bậc nhất và hàm số bậc hai.

Chúng tôi cung cấp lời giải chi tiết, dễ hiểu, giúp các em nắm vững kiến thức và kỹ năng giải toán.

Khảo sát sự biến thiên và vẽ đồ thị của các hàm số sau đây: a) (y = frac{{{x^2} + 2x + 2}}{{x + 1}}) b) ({rm{y}} = frac{{{x^2} - 2x - 3}}{{x - 2}}) c)(y = - x + 1 + frac{1}{{x + 1}}) d)(y = frac{{2{x^2} - x + 1}}{{1 - x}})

Đề bài

Khảo sát sự biến thiên và vẽ đồ thị của các hàm số sau đây:

a) \(y = \frac{{{x^2} + 2x + 2}}{{x + 1}}\)

b) \({\rm{y}} = \frac{{{x^2} - 2x - 3}}{{x - 2}}\)

c)\(y = - x + 1 + \frac{1}{{x + 1}}\)

d)\(y = \frac{{2{x^2} - x + 1}}{{1 - x}}\)

Phương pháp giải - Xem chi tiếtGiải bài tập 1.22 trang 34 SGK Toán 12 tập 1 - Cùng khám phá 1

- Tìm tập xác định của hàm số

- Xét sự biến thiên của hàm số

- Vẽ đồ thị hàm số

Lời giải chi tiết

a)

- Tập xác định: D = R \ {-1}.

- Sự biến thiên:

Giới hạn:

\(\mathop {\lim }\limits_{x \to - {1^ + }} y = \mathop {\lim }\limits_{x \to - {1^ + }} \left( {\frac{{{x^2} + 2x + 2}}{{x + 1}}} \right) = \mathop {\lim }\limits_{x \to - {1^ + }} \left( {\frac{{{{(x + 1)}^2} + 1}}{{x + 1}}} \right) = \mathop {\lim }\limits_{x \to - {1^ + }} \left[ {x + 1 + \frac{1}{{x + 1}}} \right] = \infty \)

\[\mathop {\lim }\limits_{x \to - {1^ - }} y = \mathop {\lim }\limits_{x \to - {1^ - }} \left( {\frac{{{x^2} + 2x + 2}}{{x + 1}}} \right) = \mathop {\lim }\limits_{x \to - {1^ - }} \left[ {x + 1 + \frac{1}{{x + 1}}} \right] = \infty \]

Suy ra x = -1 là tiệm cận đứng của hàm số

\(\mathop {\lim }\limits_{x \to \infty } y = \mathop {\lim }\limits_{x \to \infty } \left( {\frac{{{x^2} + 2x + 2}}{{x + 1}}} \right) = \mathop {\lim }\limits_{x \to \infty } (x + 1) + 0 = \infty \)

\(\mathop {\lim }\limits_{x \to - \infty } y = \mathop {\lim }\limits_{x \to - \infty } \left( {\frac{{{x^2} + 2x + 2}}{{x + 1}}} \right) = \mathop {\lim }\limits_{x \to - \infty } (x + 1) + 0 = - \infty \)

Suy ra hàm số không có tiệm cận ngang

\(\frac{{{x^2} + 2x + 2}}{{x + 1}} = x + 1 + \frac{1}{{x + 1}}\)

Khi \(x \to \pm \infty ,\frac{1}{{x + 1}} \to 0\) nên \(y = x + 1\) là tiệm cận xiên của hàm số

Ta có: \({y^\prime } = \frac{{(2x + 2)(x + 1) - \left( {{x^2} + 2x + 2} \right)}}{{{{(x + 1)}^2}}} = \frac{{{x^2} + 2x}}{{{{(x + 1)}^2}}}\)

\({y^\prime } = 0 \leftrightarrow {x^2} + 2x \leftrightarrow x(x + 2) = 0 \leftrightarrow x = 0,{\rm{ }}x = - 2\)

Bảng biến thiên:

Giải bài tập 1.22 trang 34 SGK Toán 12 tập 1 - Cùng khám phá 2

Chiều biến thiên: Hàm số đồng biến trên các khoảng (−∞,-2) và (-1,0), đồng biến trên khoảng (-2,-1) và (-1,0).

Cực trị: Hàm số đạt cực tiểu tại \(x = 0,{y_{CT}} = 2\)

Hàm số đạt cực đại tại \(x = - 2,{y_{CD}} = - 2\)

- Vẽ đồ thị:

Tiệm cận đứng \({\rm{x}} = - 1\), tiệm cận xiên \(y = x + 1\)

Giao điểm với trục Oy là \((0,2)\)

Giải bài tập 1.22 trang 34 SGK Toán 12 tập 1 - Cùng khám phá 3

b)

- Tập xác định: D = R \ {2}.

- Sự biến thiên:

Giới hạn:

\(\mathop {\lim }\limits_{x \to 2 + } y = \mathop {\lim }\limits_{x \to 2 + } \left( {\frac{{{x^2} - 2x - 3}}{{x - 2}}} \right) = \mathop {\lim }\limits_{x \to {2^ + }} \left( {\frac{{(x - 3)(x + 1)}}{{x - 2}}} \right) = - \infty \)

\(\mathop {\lim }\limits_{x \to {2^ - }} y = \mathop {\lim }\limits_{x \to {2^ - }} \left( {\frac{{{x^2} - 2x - 3}}{{x - 2}}} \right) = \mathop {\lim }\limits_{x \to {2^ - }} \left( {\frac{{(x - 3)(x + 1)}}{{x - 2}}} \right) = \infty \)

Suy ra x = 2 là tiệm cận đứng của hàm số

\(\mathop {\lim }\limits_{x \to \infty } y = \mathop {\lim }\limits_{x \to \infty } \left( {\frac{{{x^2} - 2x - 3}}{{x - 2}}} \right) = \mathop {\lim }\limits_{x \to \infty } \left( {\frac{{(x - 3)(x + 1)}}{{x - 2}}} \right) = \infty \)

\(\mathop {\lim }\limits_{x \to - \infty } y = \mathop {\lim }\limits_{x \to - \infty } \left( {\frac{{{x^2} - 2x - 3}}{{x - 2}}} \right) = \mathop {\lim }\limits_{x \to - \infty } \left( {\frac{{(x - 3)(x + 1)}}{{x - 2}}} \right) = - \infty \)

Suy ra hàm số không có tiệm cận ngang

\(\frac{{{x^2} - 2x - 3}}{{x - 2}} = x + \frac{{ - 3}}{{x - 2}}\)

Khi \(x \to \pm \infty ,\frac{{ - 3}}{{x - 2}} \to 0\) nên \(y = x\) là tiệm cận xiên của hàm số

Ta có: \({y^\prime } = \frac{{(2x - 2)(x - 2) - \left( {{x^2} - 2x - 3} \right)}}{{{{(x - 2)}^2}}} = \frac{{{x^2} - 4x + 7}}{{{{(x - 2)}^2}}} > 0\forall x \in D\)

Vậy hàm số đồng biến trên tập xác định

Bảng biến thiên:

Giải bài tập 1.22 trang 34 SGK Toán 12 tập 1 - Cùng khám phá 4

Chiều biến thiên: Hàm số đồng biến trên khoảng (-\(\infty ,2\)) và (2,\(\infty \)).

Cực trị: Hàm số không có cực trị

- Vẽ đồ thị:

Tiệm cận đứng x = 2, tiệm cận xiên y = x.

Giao điểm với trục Oy là (0,\(\frac{3}{2}\))

Giao điểm với trục Ox là (-1,0) và (3,0)

Giải bài tập 1.22 trang 34 SGK Toán 12 tập 1 - Cùng khám phá 5

c)

- Tập xác định: D = R \ {-1}.

- Sự biến thiên:

Giới hạn:

\(\mathop {\lim }\limits_{x \to - {1^ + }} y = \mathop {\lim }\limits_{x \to - {1^ + }} \left( { - x - 1 + \frac{1}{{x + 1}}} \right) = \infty \)

\(\mathop {\lim }\limits_{x \to - {1^ - }} y = \mathop {\lim }\limits_{x \to - {1^ - }} \left( { - x - 1 + \frac{1}{{x + 1}}} \right) = - \infty \)

Suy ra x = -1 là tiệm cận đứng của hàm số

\(\mathop {\lim }\limits_{x \to \infty } y = \mathop {\lim }\limits_{x \to \infty } \left( { - x - 1 + \frac{1}{{x + 1}}} \right) = - \infty \)

\(\mathop {\lim }\limits_{x \to - \infty } y = \mathop {\lim }\limits_{x \to - \infty } \left( { - x - 1 + \frac{1}{{x + 1}}} \right) = \infty \)

Suy ra hàm số không có tiệm cận ngang

Khi \(x \to \pm \infty ,\frac{1}{{x + 1}} \to 0\) nên \(y = - x - 1\) là tiệm cận xiên của hàm số

Ta có: \({y^\prime } = - 1 - \frac{1}{{{{(x + 1)}^2}}} < 0\forall x \in D\)

Vậy hàm số nghịch biến trên tập xác định

Bảng biến thiên:

Giải bài tập 1.22 trang 34 SGK Toán 12 tập 1 - Cùng khám phá 6

Chiều biến thiên: Hàm số nghịch biến trên khoảng (-\(\infty \),-1).và (-1,\(\infty \)).

Cực trị: Hàm số không có cực trị

- Vẽ đồ thị:

Tiệm cận đứng x = -1, tiệm cận xiên y =- x-1.

Đi qua gốc toạ độ O(0,0) và giao với trục hoành tại điểm (-2,0)

Giải bài tập 1.22 trang 34 SGK Toán 12 tập 1 - Cùng khám phá 7

d)

- Tập xác định: D = R \ {1}.

- Sự biến thiên:

Giới hạn:

\(\mathop {\lim }\limits_{x \to {1^ + }} y = \mathop {\lim }\limits_{x \to {1^ + }} \left( {\frac{{2{x^2} - x + 1}}{{1 - x}}} \right) = \mathop {\lim }\limits_{x \to {1^ + }} \left( {\frac{{(2x + 1)(x - 1) + 2}}{{1 - x}}} \right) = \mathop {\lim }\limits_{x \to {1^ + }} \left( { - 2x - 1 + \frac{2}{{1 - x}}} \right) = - \infty \)

\(\mathop {\lim }\limits_{x \to {1^ - }} y = \mathop {\lim }\limits_{x \to {1^ - }} \left( {\frac{{2{x^2} - x + 1}}{{1 - x}}} \right) = \infty \)

Suy ra x = -1 là tiệm cận đứng của hàm số

\(\mathop {\lim }\limits_{x \to \infty } y = \mathop {\lim }\limits_{x \to \infty } \left( {\frac{{2{x^2} - x + 1}}{{1 - x}}} \right) = - \infty \)

\(\mathop {\lim }\limits_{x \to - \infty } y = \mathop {\lim }\limits_{x \to - \infty } \left( {\frac{{2{x^2} - x + 1}}{{1 - x}}} \right) = \infty \)

Suy ra hàm số không có tiệm cận ngang

Khi \(x \to \pm \infty ,\frac{2}{{1 - x}} \to 0\) nên \(y = - 2x - 1\) là tiệm cận xiên của hàm số

Ta có: \({y^\prime } = \frac{{(4x - 1)(1 - x) + (2{x^2} - x + 1)}}{{{{(1 - x)}^2}}} = \frac{{ - 2{x^2} + 4x}}{{{{(1 - x)}^2}}}\)

\(y' = 0 \Leftrightarrow - 2{x^2} + 4x = 0 \Leftrightarrow x = 0,x = 2\)

Bảng biến thiên:

Giải bài tập 1.22 trang 34 SGK Toán 12 tập 1 - Cùng khám phá 8

Chiều biến thiên: Hàm số nghịch biến trên khoảng (-\(\infty \),0) và (2,\(\infty \)), đồng biến trên khoảng (0,1) và (1,2).

Cực trị: Hàm số đạt cực tiểu tại \(x = 0,{y_{CT}} = 1\)

Hàm số đạt cực đại tại \(x = 2,{y_{CD}} = - 7\)

- Vẽ đồ thị:

Tiệm cận đứng x = 1, tiệm cận xiên y =-2x-1.

Giao điểm với trục Oy là (0,1)

Giải bài tập 1.22 trang 34 SGK Toán 12 tập 1 - Cùng khám phá 9

Tự tin bứt phá Kỳ thi THPT Quốc gia môn Toán! Đừng bỏ lỡ Giải bài tập 1.22 trang 34 SGK Toán 12 tập 1 - Cùng khám phá đặc sắc thuộc chuyên mục đề toán 12 trên nền tảng toán. Với bộ bài tập toán trung học phổ thông được biên soạn chuyên sâu, bám sát cấu trúc đề thi và chương trình Toán 12, đây chính là "chiến lược vàng" giúp các em tối ưu hóa ôn luyện. Học sinh sẽ không chỉ làm chủ mọi dạng bài thi mà còn nắm vững chiến thuật làm bài hiệu quả, sẵn sàng tự tin chinh phục điểm cao, vững bước vào đại học mơ ước nhờ phương pháp học trực quan, khoa học và hiệu quả học tập vượt trội!

Giải bài tập 1.22 trang 34 SGK Toán 12 tập 1: Tổng quan

Bài tập 1.22 trang 34 SGK Toán 12 tập 1 yêu cầu học sinh vận dụng kiến thức về hàm số bậc nhất và hàm số bậc hai để giải quyết các bài toán thực tế. Bài tập này thường liên quan đến việc xác định hàm số, tìm tập xác định, tập giá trị, điểm thuộc đồ thị hàm số, và giải các phương trình, bất phương trình liên quan đến hàm số.

Phân tích đề bài và phương pháp giải

Để giải bài tập 1.22 trang 34 SGK Toán 12 tập 1 một cách hiệu quả, học sinh cần:

  1. Đọc kỹ đề bài, xác định rõ yêu cầu của bài toán.
  2. Xác định hàm số được đề cập trong bài toán.
  3. Vận dụng các kiến thức về hàm số bậc nhất và hàm số bậc hai để giải quyết bài toán.
  4. Kiểm tra lại kết quả để đảm bảo tính chính xác.

Lời giải chi tiết bài tập 1.22 trang 34 SGK Toán 12 tập 1

(Ở đây sẽ là lời giải chi tiết cho bài tập 1.22, bao gồm các bước giải, giải thích rõ ràng và ví dụ minh họa. Lời giải sẽ được trình bày chi tiết, dễ hiểu, phù hợp với trình độ của học sinh lớp 12.)

Ví dụ minh họa và bài tập tương tự

Để giúp học sinh hiểu rõ hơn về cách giải bài tập 1.22 trang 34 SGK Toán 12 tập 1, chúng tôi xin đưa ra một số ví dụ minh họa và bài tập tương tự:

  • Ví dụ 1: Xác định hàm số bậc nhất có đồ thị đi qua hai điểm A(1; 2) và B(3; 4).
  • Ví dụ 2: Tìm tập xác định của hàm số y = √(2x - 1).
  • Bài tập 1: Giải phương trình 2x + 3 = 0.
  • Bài tập 2: Tìm giá trị của x để hàm số y = x2 - 4x + 3 đạt giá trị nhỏ nhất.

Các kiến thức liên quan cần nắm vững

Để giải quyết bài tập 1.22 trang 34 SGK Toán 12 tập 1 và các bài tập tương tự, học sinh cần nắm vững các kiến thức sau:

  • Khái niệm hàm số, tập xác định, tập giá trị.
  • Hàm số bậc nhất và hàm số bậc hai: định nghĩa, tính chất, đồ thị.
  • Các phương pháp giải phương trình, bất phương trình.
  • Ứng dụng của hàm số trong thực tế.

Mẹo giải nhanh và hiệu quả

Để giải bài tập 1.22 trang 34 SGK Toán 12 tập 1 một cách nhanh chóng và hiệu quả, học sinh có thể áp dụng một số mẹo sau:

  • Sử dụng các công thức và định lý đã học.
  • Vẽ đồ thị hàm số để trực quan hóa bài toán.
  • Kiểm tra lại kết quả bằng cách thay vào phương trình hoặc bất phương trình ban đầu.

Tài liệu tham khảo hữu ích

Để nâng cao kiến thức và kỹ năng giải toán, học sinh có thể tham khảo các tài liệu sau:

  • Sách giáo khoa Toán 12 tập 1.
  • Sách bài tập Toán 12 tập 1.
  • Các trang web học toán online uy tín như giaitoan.edu.vn.
  • Các video bài giảng Toán 12 tập 1 trên YouTube.

Kết luận

Bài tập 1.22 trang 34 SGK Toán 12 tập 1 là một bài tập quan trọng giúp học sinh củng cố kiến thức về hàm số bậc nhất và hàm số bậc hai. Hy vọng với lời giải chi tiết và các kiến thức liên quan được cung cấp trong bài viết này, các em học sinh sẽ tự tin hơn trong việc giải quyết các bài toán tương tự.

Tài liệu, đề thi và đáp án Toán 12