Chào mừng các em học sinh đến với bài giải bài tập 4.8 trang 10 SGK Toán 12 tập 2 tại giaitoan.edu.vn. Bài tập này thuộc chương trình học Toán 12, tập trung vào kiến thức về đạo hàm và ứng dụng của đạo hàm trong việc khảo sát hàm số.
Chúng tôi cung cấp lời giải chi tiết, dễ hiểu, giúp các em nắm vững kiến thức và kỹ năng giải bài tập một cách hiệu quả.
Cường độ dòng điện (đơn vị: A) trong một dây dẫn tại thời điểm t giây là: \(I(t) = Q'(t) = 3{t^2} - 6t + 5\), Với \(Q(t)\) là điện lượng (đơn vị: C) truyền trong dây dẫn tại thời điểm t. Biết khi \(t = 1\) giây, điện lượng truyền trong dây dẫn là \(Q(1) = 4\). Tính điện lượng truyền trong dây dẫn khi \(t = 3\).
Đề bài
Cường độ dòng điện (đơn vị: A) trong một dây dẫn tại thời điểm t giây là:
\(I(t) = Q'(t) = 3{t^2} - 6t + 5\),
với \(Q(t)\) là điện lượng (đơn vị: C) truyền trong dây dẫn tại thời điểm t. Biết khi \(t = 1\) giây, điện lượng truyền trong dây dẫn là \(Q(1) = 4\). Tính điện lượng truyền trong dây dẫn khi \(t = 3\).
Phương pháp giải - Xem chi tiết
Để tính điện lượng truyền trong dây dẫn khi \(t = 3\) giây, ta thực hiện các bước sau:
- Xác định hàm lượng điện \(Q(t)\) bằng cách tìm nguyên hàm của \(I(t)\).
- Dựa trên dữ liệu tại \(t = 1\) để tìm hằng số C.
- Thay \(t = 3\) để tính điện lượng.
Lời giải chi tiết
Ta biết rằng cường độ dòng điện \(I(t)\) là đạo hàm của hàm điện lượng \(Q(t)\):
\(I(t) = Q'(t)\)
Để tìm hàm \(Q(t)\), ta tích phân hàm \(Q'(t)\):
\(Q(t) = \int {(3{t^2} - 6t + 5)} {\mkern 1mu} dt = {t^3} - 3{t^2} + 5t + C\)
Theo đề bài ta có \(t = 1\) giây, \(Q(1) = 4\). Sử dụng điều kiện này để tìm \(C\):
\(Q(1) = {1^3} - 3 \cdot {1^2} + 5 \cdot 1 + C\)
\(4 = 1 - 3 + 5 + C\)
\(4 = 3 + C\)
\(C = 1\)
Vậy hàm \(Q(t)\) là:
\(Q(t) = {t^3} - 3{t^2} + 5t + 1\)
Thay \(t = 3\) vào hàm \(Q(t)\):
\(Q(3) = {3^3} - 3 \cdot {3^2} + 5 \cdot 3 + 1\)
\(Q(3) = 27 - 27 + 15 + 1\)
\(Q(3) = 16\)
Điện lượng truyền trong dây dẫn khi \(t = 3\) giây là \(Q(3) = 16\).
Bài tập 4.8 trang 10 SGK Toán 12 tập 2 là một bài toán quan trọng trong chương trình học về đạo hàm và ứng dụng của đạo hàm. Để giải bài tập này một cách hiệu quả, chúng ta cần nắm vững các kiến thức cơ bản về đạo hàm, bao gồm:
Bài tập 4.8 yêu cầu chúng ta khảo sát hàm số và tìm các điểm cực trị, khoảng đồng biến, nghịch biến. Cụ thể, bài tập có thể yêu cầu:
Để giải bài tập này, chúng ta thực hiện các bước sau:
Giả sử hàm số cần khảo sát là y = x3 - 3x2 + 2. Chúng ta sẽ thực hiện các bước như sau:
Giaitoan.edu.vn là một trang web học toán online uy tín, cung cấp đầy đủ các bài giải bài tập SGK Toán 12, các bài giảng video, và các tài liệu học tập hữu ích khác. Chúng tôi hy vọng rằng với sự hỗ trợ của giaitoan.edu.vn, các em sẽ học tập tốt môn Toán và đạt được kết quả cao trong các kỳ thi.