Chào mừng các em học sinh đến với bài giải bài tập 1.31 trang 45 SGK Toán 12 tập 1 tại giaitoan.edu.vn. Bài tập này thuộc chương trình học môn Toán lớp 12, tập trung vào kiến thức về đạo hàm và ứng dụng của đạo hàm trong việc khảo sát hàm số.
Chúng tôi cung cấp lời giải chi tiết, dễ hiểu, giúp các em nắm vững kiến thức và kỹ năng giải bài tập một cách hiệu quả.
Từ một miếng bìa hình chữ nhật với kích thước 20cm x 10cm, bạn Lan cắt bỏ hai hình vuông có cạnh là x (cm) và hai hình chữ nhật (phần gạch sọc Hình 1.65) rồi gấp theo đường nét đứt và dán các mép để được một cái hộp có dạng hình hộp chữ nhật. Tìm x để thể tích hộp là lớn nhất và tính giá trị lớn nhất đó.
Đề bài
Từ một miếng bìa hình chữ nhật với kích thước 20cm x 10cm, bạn Lan cắt bỏ hai hình vuông có cạnh là x (cm) và hai hình chữ nhật (phần gạch sọc Hình 1.65) rồi gấp theo đường nét đứt và dán các mép để được một cái hộp có dạng hình hộp chữ nhật. Tìm x để thể tích hộp là lớn nhất và tính giá trị lớn nhất đó.
Phương pháp giải - Xem chi tiết
- Xác định chiều dài, chiều rộng và chiều cao của hộp sau khi cắt bỏ hình vuông và hình chữ nhật.
- Tìm công thức của hộp dựa trên các kích thước đã được xác định.
- Khảo sát hàm số thể tích để tìm giá trị lớn nhất.
Lời giải chi tiết
- Sau khi cắt bỏ và gấp lại, các phần còn lại của miếng bìa sẽ tạo thành một hình hộp chữ nhật kích thước:
Chiều dài: \(\frac{{20}}{2} - x = 10 - x\) (cm)
Chiều rộng: 10−2𝑥 (cm)
Chiều cao: 𝑥 (cm)
- Thể tích của hình hộp chữ nhật là:
\(\begin{array}{l}V = x.(10 - x).(10 - 2x)\\ = (10x - {x^2}).(10 - 2x)\\ = 2{x^3} - 30{x^2} + 100x\end{array}\)
- Đạo hàm của hàm số thể tích là: \(V'(x) = 6{x^2} - 60x + 100\)
- Giải phương trình \(V'(x) = 0\):
\(6{x^2} - 60x + 100 = 0 \Leftrightarrow 3{x^2} - 30x + 50 = 0 \Rightarrow x = 5 \pm \frac{{5\sqrt 3 }}{5}\)
Vì miền xác định của 𝑥 là \(0 \le x \le 5\)nên chỉ nhận giá trị \(x = 5 - \frac{{5\sqrt 3 }}{5}\)
- Bảng biến thiên:
Vậy \(x = 5 - \frac{{5\sqrt 3 }}{5} \approx 2,11\) thì thể tích hình hộp là lớn nhất và có giá trị là \({V_{\max }} \approx 96.23\)cm3.
Bài tập 1.31 trang 45 SGK Toán 12 tập 1 yêu cầu chúng ta khảo sát hàm số và tìm các điểm cực trị. Để giải bài tập này một cách hiệu quả, chúng ta cần nắm vững các bước sau:
Để minh họa, chúng ta sẽ cùng nhau giải bài tập 1.31 trang 45 SGK Toán 12 tập 1 với hàm số cụ thể. (Giả sử hàm số là y = x^3 - 3x^2 + 2)
Đạo hàm là một công cụ mạnh mẽ trong việc giải các bài tập liên quan đến khảo sát hàm số. Nó giúp chúng ta:
Để giải các bài tập về đạo hàm một cách hiệu quả, bạn nên:
Bài tập 1.31 trang 45 SGK Toán 12 tập 1 là một bài tập điển hình về khảo sát hàm số bằng đạo hàm. Hy vọng rằng với lời giải chi tiết và hướng dẫn giải trên, các em học sinh đã hiểu rõ cách giải bài tập này và có thể áp dụng vào các bài tập tương tự. Chúc các em học tập tốt!