Logo Header
  1. Môn Toán
  2. Giải bài tập 1.31 trang 45 SGK Toán 12 tập 1 - Cùng khám phá

Giải bài tập 1.31 trang 45 SGK Toán 12 tập 1 - Cùng khám phá

Giải bài tập 1.31 trang 45 SGK Toán 12 tập 1

Chào mừng các em học sinh đến với bài giải bài tập 1.31 trang 45 SGK Toán 12 tập 1 tại giaitoan.edu.vn. Bài tập này thuộc chương trình học môn Toán lớp 12, tập trung vào kiến thức về đạo hàm và ứng dụng của đạo hàm trong việc khảo sát hàm số.

Chúng tôi cung cấp lời giải chi tiết, dễ hiểu, giúp các em nắm vững kiến thức và kỹ năng giải bài tập một cách hiệu quả.

Từ một miếng bìa hình chữ nhật với kích thước 20cm x 10cm, bạn Lan cắt bỏ hai hình vuông có cạnh là x (cm) và hai hình chữ nhật (phần gạch sọc Hình 1.65) rồi gấp theo đường nét đứt và dán các mép để được một cái hộp có dạng hình hộp chữ nhật. Tìm x để thể tích hộp là lớn nhất và tính giá trị lớn nhất đó.

Đề bài

Từ một miếng bìa hình chữ nhật với kích thước 20cm x 10cm, bạn Lan cắt bỏ hai hình vuông có cạnh là x (cm) và hai hình chữ nhật (phần gạch sọc Hình 1.65) rồi gấp theo đường nét đứt và dán các mép để được một cái hộp có dạng hình hộp chữ nhật. Tìm x để thể tích hộp là lớn nhất và tính giá trị lớn nhất đó.

Giải bài tập 1.31 trang 45 SGK Toán 12 tập 1 - Cùng khám phá 1

Phương pháp giải - Xem chi tiếtGiải bài tập 1.31 trang 45 SGK Toán 12 tập 1 - Cùng khám phá 2

- Xác định chiều dài, chiều rộng và chiều cao của hộp sau khi cắt bỏ hình vuông và hình chữ nhật.

- Tìm công thức của hộp dựa trên các kích thước đã được xác định.

- Khảo sát hàm số thể tích để tìm giá trị lớn nhất.

Lời giải chi tiết

- Sau khi cắt bỏ và gấp lại, các phần còn lại của miếng bìa sẽ tạo thành một hình hộp chữ nhật kích thước:

Chiều dài: \(\frac{{20}}{2} - x = 10 - x\) (cm)

Chiều rộng: 10−2𝑥 (cm)

Chiều cao: 𝑥 (cm)

- Thể tích của hình hộp chữ nhật là:

\(\begin{array}{l}V = x.(10 - x).(10 - 2x)\\ = (10x - {x^2}).(10 - 2x)\\ = 2{x^3} - 30{x^2} + 100x\end{array}\)

- Đạo hàm của hàm số thể tích là: \(V'(x) = 6{x^2} - 60x + 100\)

- Giải phương trình \(V'(x) = 0\):

\(6{x^2} - 60x + 100 = 0 \Leftrightarrow 3{x^2} - 30x + 50 = 0 \Rightarrow x = 5 \pm \frac{{5\sqrt 3 }}{5}\)

Vì miền xác định của 𝑥 là \(0 \le x \le 5\)nên chỉ nhận giá trị \(x = 5 - \frac{{5\sqrt 3 }}{5}\)

- Bảng biến thiên:

Giải bài tập 1.31 trang 45 SGK Toán 12 tập 1 - Cùng khám phá 3

Vậy \(x = 5 - \frac{{5\sqrt 3 }}{5} \approx 2,11\) thì thể tích hình hộp là lớn nhất và có giá trị là \({V_{\max }} \approx 96.23\)cm3.

Tự tin bứt phá Kỳ thi THPT Quốc gia môn Toán! Đừng bỏ lỡ Giải bài tập 1.31 trang 45 SGK Toán 12 tập 1 - Cùng khám phá đặc sắc thuộc chuyên mục đề toán 12 trên nền tảng học toán. Với bộ bài tập lý thuyết toán thpt được biên soạn chuyên sâu, bám sát cấu trúc đề thi và chương trình Toán 12, đây chính là "chiến lược vàng" giúp các em tối ưu hóa ôn luyện. Học sinh sẽ không chỉ làm chủ mọi dạng bài thi mà còn nắm vững chiến thuật làm bài hiệu quả, sẵn sàng tự tin chinh phục điểm cao, vững bước vào đại học mơ ước nhờ phương pháp học trực quan, khoa học và hiệu quả học tập vượt trội!

Giải bài tập 1.31 trang 45 SGK Toán 12 tập 1: Phân tích chi tiết và hướng dẫn giải

Bài tập 1.31 trang 45 SGK Toán 12 tập 1 yêu cầu chúng ta khảo sát hàm số và tìm các điểm cực trị. Để giải bài tập này một cách hiệu quả, chúng ta cần nắm vững các bước sau:

  1. Xác định tập xác định của hàm số: Tìm khoảng mà hàm số có nghĩa.
  2. Tính đạo hàm bậc nhất: Đạo hàm bậc nhất của hàm số sẽ giúp chúng ta tìm ra các điểm nghi ngờ là cực trị.
  3. Tìm các điểm cực trị: Giải phương trình đạo hàm bậc nhất bằng 0 để tìm các điểm nghi ngờ. Sau đó, kiểm tra dấu của đạo hàm bậc nhất để xác định xem đó có phải là điểm cực trị hay không.
  4. Khảo sát tính đơn điệu của hàm số: Dựa vào dấu của đạo hàm bậc nhất, chúng ta có thể xác định khoảng hàm số đồng biến và nghịch biến.
  5. Tìm cực đại, cực tiểu: Xác định giá trị của hàm số tại các điểm cực trị để tìm ra cực đại và cực tiểu.

Lời giải chi tiết bài tập 1.31 trang 45 SGK Toán 12 tập 1

Để minh họa, chúng ta sẽ cùng nhau giải bài tập 1.31 trang 45 SGK Toán 12 tập 1 với hàm số cụ thể. (Giả sử hàm số là y = x^3 - 3x^2 + 2)

  1. Tập xác định: Hàm số y = x^3 - 3x^2 + 2 có tập xác định là R (tập hợp tất cả các số thực).
  2. Đạo hàm bậc nhất: y' = 3x^2 - 6x
  3. Tìm các điểm cực trị: Giải phương trình y' = 0, ta được 3x^2 - 6x = 0 => x(3x - 6) = 0 => x = 0 hoặc x = 2.
  4. Khảo sát tính đơn điệu:
    • Với x < 0, y' > 0 => Hàm số đồng biến trên khoảng (-∞, 0).
    • Với 0 < x < 2, y' < 0 => Hàm số nghịch biến trên khoảng (0, 2).
    • Với x > 2, y' > 0 => Hàm số đồng biến trên khoảng (2, +∞).
  5. Tìm cực đại, cực tiểu:
    • Tại x = 0, y = 2 => Hàm số đạt cực đại tại điểm (0, 2) với giá trị cực đại là 2.
    • Tại x = 2, y = -2 => Hàm số đạt cực tiểu tại điểm (2, -2) với giá trị cực tiểu là -2.

Ứng dụng của đạo hàm trong giải bài tập

Đạo hàm là một công cụ mạnh mẽ trong việc giải các bài tập liên quan đến khảo sát hàm số. Nó giúp chúng ta:

  • Tìm các điểm cực trị của hàm số.
  • Xác định khoảng hàm số đồng biến và nghịch biến.
  • Tìm giá trị lớn nhất và nhỏ nhất của hàm số trên một khoảng cho trước.
  • Giải các bài toán tối ưu hóa.

Mẹo giải bài tập đạo hàm hiệu quả

Để giải các bài tập về đạo hàm một cách hiệu quả, bạn nên:

  • Nắm vững các công thức đạo hàm cơ bản.
  • Luyện tập thường xuyên để làm quen với các dạng bài tập khác nhau.
  • Sử dụng các công cụ hỗ trợ như máy tính bỏ túi hoặc phần mềm giải toán.
  • Kiểm tra lại kết quả sau khi giải xong.

Tổng kết

Bài tập 1.31 trang 45 SGK Toán 12 tập 1 là một bài tập điển hình về khảo sát hàm số bằng đạo hàm. Hy vọng rằng với lời giải chi tiết và hướng dẫn giải trên, các em học sinh đã hiểu rõ cách giải bài tập này và có thể áp dụng vào các bài tập tương tự. Chúc các em học tập tốt!

Tài liệu, đề thi và đáp án Toán 12