Chào mừng các em học sinh đến với bài giải bài tập 4.31 trang 36 SGK Toán 12 tập 2 tại giaitoan.edu.vn. Bài tập này thuộc chương trình học Toán 12, tập trung vào việc vận dụng kiến thức đã học để giải quyết các bài toán thực tế.
Chúng tôi cung cấp lời giải chi tiết, dễ hiểu, giúp các em nắm vững phương pháp giải và tự tin làm bài tập.
Một ô tô đang chạy với vận tốc \(20{\mkern 1mu} {\rm{m/s}}\) thì người lái đạp phanh, từ thời điểm đó ô tô chuyển động với vận tốc \(v(t) = - 5t + 20{\mkern 1mu} {\rm{(m/s)}}\), trong đó \(t\) là khoảng thời gian tính bằng giây kể từ lúc bắt đầu đạp phanh. Hỏi từ lúc đạp phanh đến khi dừng hẳn, ô tô còn di chuyển thêm một quãng đường dài bao nhiêu mét?
Đề bài
Một ô tô đang chạy với vận tốc \(20{\mkern 1mu} {\rm{m/s}}\) thì người lái đạp phanh, từ thời điểm đó ô tô chuyển động với vận tốc \(v(t) = - 5t + 20{\mkern 1mu} {\rm{(m/s)}}\), trong đó \(t\) là khoảng thời gian tính bằng giây kể từ lúc bắt đầu đạp phanh. Hỏi từ lúc đạp phanh đến khi dừng hẳn, ô tô còn di chuyển thêm một quãng đường dài bao nhiêu mét?
Phương pháp giải - Xem chi tiết
Quãng đường xe di chuyển được tính bằng tích phân của vận tốc theo thời gian.
Ta tìm thời gian xe dừng lại bằng cách giải phương trình \(v(t) = 0\).
Sau đó, tính quãng đường bằng cách tích phân vận tốc trên khoảng thời gian từ \(t = 0\) đến thời điểm xe dừng.
Lời giải chi tiết
Xác định thời gian dừng:
Từ phương trình vận tốc:
\(v(t) = - 5t + 20\)
Ta cho \(v(t) = 0\) để tìm thời gian dừng:
\(0 = - 5t + 20\)
\(t = 4{\mkern 1mu} \) (giây)
Quãng đường
\(s\) được tính bằng tích phân của vận tốc theo thời gian:
\(s = \int_0^4 v (t){\mkern 1mu} dt = \int_0^4 {( - 5t + 20)} {\mkern 1mu} dt\)
\(s = \left[ { - \frac{{5{t^2}}}{2} + 20t} \right]_0^4 = \left( { - \frac{{5 \times {4^2}}}{2} + 20 \times 4} \right) - \left( { - \frac{{5 \times {0^2}}}{2} + 20 \times 0} \right)\)
\(s = ( - 40 + 80) - 0 = 40{\mkern 1mu} {\rm{m}}\)
Ô tô sẽ di chuyển thêm quãng đường \(40{\mkern 1mu} {\rm{m}}\) trước khi dừng hẳn.
Bài tập 4.31 trang 36 SGK Toán 12 tập 2 thường liên quan đến việc ứng dụng các kiến thức về đạo hàm để giải quyết các bài toán thực tế, chẳng hạn như tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số, hoặc xét tính đơn điệu của hàm số. Để giải quyết bài toán này một cách hiệu quả, chúng ta cần nắm vững các bước sau:
Giả sử bài tập 4.31 yêu cầu tìm giá trị lớn nhất của hàm số f(x) = -x3 + 3x2 - 2 trên đoạn [-1; 3]. Chúng ta sẽ áp dụng các bước trên để giải quyết bài toán này:
Ngoài bài tập 4.31, SGK Toán 12 tập 2 còn nhiều bài tập tương tự yêu cầu vận dụng kiến thức về đạo hàm. Một số dạng bài tập phổ biến bao gồm:
Để giải quyết các bài tập này, chúng ta cần nắm vững các khái niệm và định lý về đạo hàm, đồng thời luyện tập thường xuyên để rèn luyện kỹ năng giải toán.
Khi giải bài tập về đạo hàm, các em cần lưu ý một số điểm sau:
Bài tập 4.31 trang 36 SGK Toán 12 tập 2 là một bài tập điển hình để rèn luyện kỹ năng vận dụng kiến thức về đạo hàm. Hy vọng với lời giải chi tiết và các hướng dẫn trên, các em học sinh sẽ tự tin giải quyết bài tập này và các bài tập tương tự một cách hiệu quả. Chúc các em học tốt!