Chào mừng các em học sinh đến với bài giải chi tiết bài tập 2.22 trang 80 SGK Toán 12 tập 1 tại giaitoan.edu.vn. Bài tập này thuộc chương trình học Toán 12 tập 1, tập trung vào việc rèn luyện kỹ năng giải các bài toán liên quan đến đạo hàm và ứng dụng của đạo hàm.
Chúng tôi cung cấp lời giải chi tiết, dễ hiểu, giúp các em nắm vững kiến thức và phương pháp giải bài tập một cách hiệu quả.
Trong không gian Oxyz (đơn vị trên các trục là km), một máy bay đang bay ở độ cao 10 km, tại vị trí A(500; 200; 10). Theo hành trình dự định, máy bay sẽ phải bay qua vị trí B(700; 200; 10). Tuy nhiên do thời tiết xấu, máy bay phải chuyển hướng bay đến vị trí C(600; 300; 8). a) Tính khoảng cách từ A đến C. b) Hỏi trong quãng thời gian tránh vùng thời tiết xấu, máy bay đã phải bay chệch hướng dự định một góc bao nhiêu độ?
Đề bài
Trong không gian Oxyz (đơn vị trên các trục là km), một máy bay đang bay ở độ cao 10 km, tại vị trí A(500; 200; 10). Theo hành trình dự định, máy bay sẽ phải bay qua vị trí B(700; 200; 10). Tuy nhiên do thời tiết xấu, máy bay phải chuyển hướng bay đến vị trí C(600; 300; 8).
a) Tính khoảng cách từ A đến C.
b) Hỏi trong quãng thời gian tránh vùng thời tiết xấu, máy bay đã phải bay chệch hướng dự định một góc bao nhiêu độ?
Phương pháp giải - Xem chi tiết
a) Sử dụng công thức khoảng cách giữa hai điểm trong không gian Oxyz.
b) Sử dụng công thức góc giữa hai vectơ để tìm góc giữa hướng ban đầu và hướng di chuyển thực tế.
Lời giải chi tiết
a) Khoảng cách từ A(500; 200; 10) đến C(600; 300; 8) là:
\(\begin{array}{l}AC = \sqrt {{{(600 - 500)}^2} + {{(300 - 200)}^2} + {{(8 - 10)}^2}} = \sqrt {{{100}^2} + {{100}^2} + {{( - 2)}^2}} \\AC = \sqrt {10000 + 10000 + 4} = \sqrt {20004} \approx 141.44\;{\rm{km}}\end{array}\)
b) Tính góc chệch hướng: Tạo hai vectơ \(\overrightarrow {AB} \) và \(\overrightarrow {AC} \):
\(\overrightarrow {AB} = (700 - 500;200 - 200;10 - 10) = (200;0;0)\)
\(\overrightarrow {AC} = (600 - 500;300 - 200;8 - 10) = (100;100; - 2)\)
Tính góc giữa hai vectơ:
\(\cos \theta = \frac{{\overrightarrow {AB} \cdot \overrightarrow {AC} }}{{|\overrightarrow {AB} | \times |\overrightarrow {AC} |}} = \frac{{(200) \times (100) + 0 \times 100 + 0 \times ( - 2)}}{{\sqrt {{{200}^2}} \times \sqrt {{{100}^2} + {{100}^2} + {{( - 2)}^2}} }} = \frac{{20000}}{{200 \times 141.43}} = \frac{{20000}}{{28286}} \approx 0.707\)
Vậy \(\theta = {\cos ^{ - 1}}(0.707) \approx {45^\circ }\).
Bài tập 2.22 trang 80 SGK Toán 12 tập 1 yêu cầu học sinh vận dụng kiến thức về đạo hàm của hàm số để giải quyết một bài toán thực tế. Bài toán thường liên quan đến việc tìm điểm cực trị, khoảng đồng biến, nghịch biến của hàm số, hoặc ứng dụng đạo hàm để giải các bài toán tối ưu hóa.
Để hiểu rõ hơn về bài tập này, chúng ta cần xem xét lại lý thuyết cơ bản về đạo hàm. Đạo hàm của một hàm số tại một điểm cho ta biết tốc độ thay đổi của hàm số tại điểm đó. Nếu đạo hàm bằng 0 tại một điểm, điểm đó có thể là điểm cực trị của hàm số. Nếu đạo hàm dương trên một khoảng, hàm số đồng biến trên khoảng đó, và nếu đạo hàm âm trên một khoảng, hàm số nghịch biến trên khoảng đó.
Giả sử bài tập 2.22 yêu cầu tìm cực trị của hàm số y = x3 - 3x2 + 2.
Ngoài SGK Toán 12 tập 1, các em có thể tham khảo thêm các tài liệu sau để nâng cao kiến thức và kỹ năng giải bài tập:
Bài tập 2.22 trang 80 SGK Toán 12 tập 1 là một bài tập quan trọng giúp các em rèn luyện kỹ năng giải các bài toán liên quan đến đạo hàm và ứng dụng của đạo hàm. Hy vọng với hướng dẫn chi tiết và phương pháp giải trên, các em sẽ tự tin giải quyết bài tập này một cách hiệu quả.