Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 12. Bài viết này sẽ hướng dẫn bạn cách giải bài tập 2.35 trang 83 SGK Toán 12 tập 1 một cách nhanh chóng và hiệu quả.
Chúng tôi luôn cố gắng mang đến những giải pháp học tập tốt nhất, giúp bạn nắm vững kiến thức và tự tin hơn trong các kỳ thi.
Cho ba điểm \(A(0;4;2),B(2;0;1),C(1; - 1;0)\). Trọng tâm của tam giác ABC là A. \(G\left( {\frac{1}{3};\frac{1}{3};\frac{1}{3}} \right)\). B. \(G(3;3;3)\). C. \(G( - 1; - 1; - 1)\). D. \(G(1;1;1)\).
Đề bài
Cho ba điểm \(A(0;4;2),B(2;0;1),C(1; - 1;0)\). Trọng tâm của tam giác ABC là
A. \(G\left( {\frac{1}{3};\frac{1}{3};\frac{1}{3}} \right)\).
B. \(G(3;3;3)\).
C. \(G( - 1; - 1; - 1)\).
D. \(G(1;1;1)\).
Phương pháp giải - Xem chi tiết
Sử dụng công thức trọng tâm tam giác trong không gian: Nếu \(G\) là trọng tâm của tam giác có các đỉnh \(A({x_A},{y_A},{z_A})\), \(B({x_B},{y_B},{z_B})\), \(C({x_C},{y_C},{z_C})\) thì tọa độ của \(G\) là:
\(G\left( {\frac{{{x_A} + {x_B} + {x_C}}}{3},\frac{{{y_A} + {y_B} + {y_C}}}{3},\frac{{{z_A} + {z_B} + {z_C}}}{3}} \right)\)
Lời giải chi tiết
Tọa độ của \(G\) là:
\(G\left( {\frac{{0 + 2 + 1}}{3},\frac{{4 + 0 + ( - 1)}}{3},\frac{{2 + 1 + 0}}{3}} \right) = G\left( {\frac{3}{3},\frac{3}{3},\frac{3}{3}} \right) = G(1;1;1)\)
Chọn D.
Bài tập 2.35 trang 83 SGK Toán 12 tập 1 thuộc chương trình học về đường thẳng và mặt phẳng trong không gian. Bài tập này thường yêu cầu học sinh vận dụng kiến thức về vectơ, phương trình đường thẳng, phương trình mặt phẳng để giải quyết các bài toán liên quan đến quan hệ vị trí giữa đường thẳng và mặt phẳng.
Trước khi bắt đầu giải bài tập, chúng ta cần đọc kỹ đề bài và xác định rõ các yếu tố sau:
Để giải bài tập 2.35 trang 83 SGK Toán 12 tập 1, chúng ta có thể sử dụng các phương pháp sau:
(Giả sử đề bài cụ thể là: Cho đường thẳng d: x = 1 + t, y = 2 - t, z = 3 + 2t và mặt phẳng (P): 2x - y + z = 5. Tìm giao điểm của d và (P).)
Để tìm giao điểm của đường thẳng d và mặt phẳng (P), ta thay tọa độ của điểm thuộc d vào phương trình của (P):
2(1 + t) - (2 - t) + (3 + 2t) = 5
2 + 2t - 2 + t + 3 + 2t = 5
5t + 3 = 5
5t = 2
t = 2/5
Thay t = 2/5 vào phương trình của d, ta được:
x = 1 + 2/5 = 7/5
y = 2 - 2/5 = 8/5
z = 3 + 2(2/5) = 3 + 4/5 = 19/5
Vậy giao điểm của d và (P) là I(7/5, 8/5, 19/5).
Ngoài bài tập 2.35, SGK Toán 12 tập 1 còn nhiều bài tập khác liên quan đến đường thẳng và mặt phẳng. Ví dụ, bài tập 2.36 yêu cầu tìm góc giữa đường thẳng và mặt phẳng. Để giải bài tập này, ta cần sử dụng công thức tính góc giữa đường thẳng và mặt phẳng, dựa trên vectơ chỉ phương của đường thẳng và vectơ pháp tuyến của mặt phẳng.
Bài tập 2.35 trang 83 SGK Toán 12 tập 1 là một bài tập điển hình về quan hệ giữa đường thẳng và mặt phẳng. Việc nắm vững các kiến thức và phương pháp giải bài tập này sẽ giúp bạn tự tin hơn trong các kỳ thi Toán 12.
Công thức | Mô tả |
---|---|
Tích vô hướng | a.b = |a||b|cos(θ) |
Khoảng cách từ điểm M(x0, y0, z0) đến mặt phẳng (P): Ax + By + Cz + D = 0 | d(M, (P)) = |Ax0 + By0 + Cz0 + D| / √(A² + B² + C²) |